УДК 621.314.7

DOI: 10.20998/2411-0558.2016.21.02

А.Ф. ДАНИЛЕНКО, канд. техн. наук, доц., НТУ "ХПИ", **А.Г. ДЬЯКОВ**, канд. техн. наук, доц., ХГАТП, Харьков, **В.Э. ОЛЕКСЮК**, магистр, НТУ "ХПИ"

ОБЕСПЕЧЕНИЕ СТАБИЛЬНОСТИ ИЗМЕРЕНИЙ В УСТАНОВКЕ ЯМР-СПЕКТРОМЕТРА

Проведен анализ влияния параметров измерительной установки ЯМР-спектрометра на интенсивность принимаемого эхо-сигнала. Предложено устройство и обоснован метод повышения стабильности режима работы установки ЯМР-спектрометра и точности измерения параметров контролируемого вещества, путем поддержки стабильной работы высокочастотного задающего генератора, построенного на основе применения синтезатора частоты. Синтезатор частоты реализован аппаратными средствами с использованием вычислительной техники. Рассмотрена возможность реализации предложенного алгоритма на микроконтроллере. Ил. 4. Библиогр. 10 назв.

Ключевые слова: ЯМР-спектрометр, синтезатор частоти, измерение параметров, эхо-сигнал, микроконтроллер.

Постановка проблемы и анализ литературы. В настоящее время для исследования изделий и отработки технологических процессов в широко используется метод промышленности магнитного резонанса (ЯМР). Для получения необходимых параметров путем экспериментального наблюдения за исследуемыми объектами используются спектрометры ЯМР c системами управления, построенными на основе компьютерных технологий [1 – 4]. Исследуемое вещество, помещаемое в ампулу, подвергается воздействию постоянного магнитного поля H_0 , и результирующий вектор намагниченности Mустанавливается вдоль него.

После установления больцмановского распределения населенностей уровней спиновой системы образец облучается мощным импульсом переменного электромагнитного поля H_1 , частота которого v_0 должна соответствовать ларморовской прецессии ядер (установка работает на ядрах водорода):

$$v_0 = \frac{\gamma}{2\pi} \cdot H_0, \tag{1}$$

где у – гиромагнитное отношение ядер спиновой системы вещества.

Под действием частоты v_0 в спиновой системе начинаются энергетические переходы между различными ядерными уровнями. После прекращения действия радиоимпульса, заполненного частотой v_0 , спиновая система вещества самопроизвольно начинает возвращаться к

исходному распределению. При этом в приемной катушке импульсного спектрометра ЯМР индуцируется электрический сигнал, пропорциональный ядерной намагниченности. Зарегистрировав и обработав данный сигнал можно сделать заключение о структуре и свойствах исследуемого вещества.

Образец с исследуемым веществом при проведении исследований пищевых продуктов на установке ЯМР-спектрометра находится одновременно под действием двух видов магнитного поля – постоянного и переменного [5]. Величина постоянного магнитного поля определяет частоту и интенсивность воздействия переменного магнитного поля. Это магнитное поле, создается измерительной катушкой ЯМР-спектрометра. Основными параметрами при исследовании образца являются времена спин-решеточной (Т1) и спин-спиновой (Т2) релаксации.

Для получения достоверных результатов, в соответствии с соотношением (1) необходимо поддерживать неизменной частоту высокочастотного генератора в процессе измерений. Во существующих спектрометрах используются традиционные генераторы с самовозбуждением без должной стабилизации частоты переменного магнитного поля, а для поддержания соотношения (1) регулируют внешнего магнитного поля. Однако исследований в результате изменения температурного режима роботы генератора возможен уход частоты и нарушение условий резонанса. В настоящее время в спектрометрах ЯМР используют синтезаторы частоты, которые обеспечивают высокую точность и стабильность получаемой частоты а, при необходимости, и индикацию частоты генерации.

Существенным отличием в требованиях для синтезатора частоты спектрометра ЯМР по сравнению с традиционными широкодиапазонными синтезаторами радиоприемных устройств является то, что для данного синтезатора коэффициент перекрытия примерно равен единице. Однако дискретность изменения частоты должна быть высокой (единицы и десятки Герц). Поэтому вопросы повышения стабильности и надежности работы высокочастотного генератора для обеспечения стабильных измерений крайне актуальны в настоящее время.

Воздействие электромагнитного поля H_1 , направление которого перпендикулярно полю H_0 , приводит к тому, что вектор намагниченности вещества M начинает поворачиваться на угол θ за время t_u действия поля H_1 . Угол поворота (в радианах) определяется соотношением

$$\theta = \gamma H_1 t_u . \tag{2}$$

При определенном задании значений H_1 и t_u угол поворота θ будет точно соответствовать 90° , что и составляет основное условие обеспечения точного проведения измерений на спектрометрах ЯМР. Достоверность полученного результата в большой степени зависит от точности поворота M на угол в 90° . Однако выполнению данного условия предшествует требование обеспечения достаточно высокой однородности поля H_0 . Поэтому вопросы проверки однородности H_0 и последующего определения длительности величины зондирующего импульса t_u являются актуальными при проведении исследования веществ методами ЯМР.

Цель работы. Определение и обоснование подходов по анализу условий и выбору параметров импульсов и однородности напряженности поля при проведении исследований на установке ЯМР.

Проведенный анализ существующих схемотехнических решений синтезаторов частоты, дает обоснование на выбор структурной схемы синтезатора частоты ДЛЯ спектрометра ЯМР, обеспечивающего параметров требуемое возможность подстройки системы ПОД соотношение напряженности магнитного поля и его частоты, при проведении экспериментов.

Типовая схема взаимодействия ЭВМ и синтезатора частоты приведена на рис. 1.

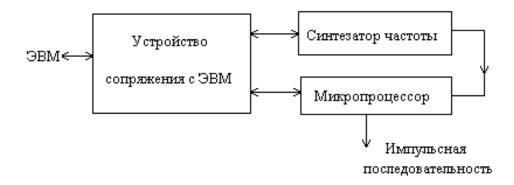


Рис. 1. Схема формирования входной импульсной последовательности спектрометра ЯМР

Особенностью синтезатора частоты для спектрометра ЯМР является малый коэффициент перекрытия частоты при обеспечении высокой дискретности изменения частоты.

Теоретическими расчетами и экспериментальными исследованиями установлено, что спад сигнала свободной индукции (ССИ) при высокой

однородности поля H_0 изменяется по экспоненциальному закону [6]. Это можно определить визуально в процессе анализа результатов измерений проанализировать либо, сигнал, впоследствии соответствующими программными средствами. Однако, если в образце, неточной установки имеется неоднородность из-за его δH_0 , регистрируется сигнал, имеющий не экспоненциальный спад (ССИ). В этом случае необходимо изменить координаты положения образца на те, где неоднородность поля δH_0 будет незначительной. Практически это можно произвести следующим способом [7]: регистрируем ССИ, анализируем характер спада сигнала, применив соответствующие математические методы, по результатам отклонения измерений даем заключение об однородности поля.

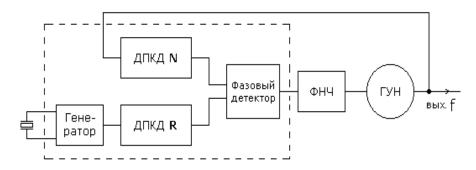


Рис. 2. Структурная схема синтезатора частоты с ФАПЧ

Изменение спада ССИ при правильной установке образцов в магнитном поле может быть представлено в виде:

$$U = U_0 \exp(\alpha t). \tag{3}$$

В случае нарушения однородности поля сигнал ССИ в первом приближении может быть представлен в виде:

$$U = U_0 \exp(\alpha t + \beta t^2 + \gamma t^3), \tag{4}$$

где α, β, γ – коэффициенты, вычисляемые в ходе эксперимента.

определения коэффициентов аппроксимирующей используются стандартные методы и функции нелинейной регрессии, имеющиеся в пакете MatchCad. Если коэффициенты β, γ – можно признать незначимыми, то однородность поля считается удовлетворительной и возможно проведение дальнейшей настройки параметров эксперимента и проведение исследований. Для проведения подобного анализа использованы стандартные методики теории планирования эксперимента [8 - 10].

На рис. 3 приведены осциллограммы ССИ в случае однородного и неоднородного поля. Применительно к приведенным сигналам были получены следующие аналитические выражения составляющих:

$$y(t) = 100 \exp(-2t)$$
 $y(t) = 100 \exp(-0.18t - 2t^2)$. (5)

Из анализа полученных выражений следует, что кривая z(t) отличается от необходимой экспоненциальной зависимости и координаты положения образца необходимо изменить.

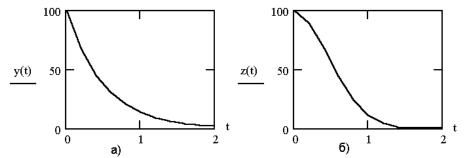


Рис. 3. Сигнал ССИ после действия 90 градусного импульса a – однородное магнитное поле; δ – неоднородное магнитное поле

Второй параметр, который должен быть точно задан при проведении исследований — это длительность первого зондирующего импульса t_u , реакция от которого должна повернуть результирующий вектор намагниченности M на угол, точно равный 90° .

В работе [6] предложена методика определения длительности импульса, предполагающая наличие синхронного детектора в измерительной системе спектрометра ЯМР, что не всегда имеет место и что в ряде случаев сильно усложняет построение канала измерения. При наличии в системе спектрометра ЯМР только амплитудного детектора невозможно воспользоваться указанной методикой.

Поэтому, предлагается следующий метод определения величины длительности сигнала первого зондирующего импульса t_u . После регистрации ССИ определяется величина

$$S(t_u)_i = \int_0^T f(t)dt, \tag{6}$$

где i — номер измерения; T — время регистрации сигнала; f(t) — запись сигнала ССИ.

Экспериментально, изменяя в ходе эксперимента длительность зондирующего импульса t_u , находят такое его значение, при котором будет выполняться условие:

$$\forall t_i (S(t_u^*)_i = \max S(t_i)), \quad i = 1 \div n, \tag{7}$$

где n – число экспериментов. Выполнение данного условия обеспечивает поворот результирующего вектора намагниченности на угол 90^{0} .

После нахождения наилучшего значения t_u^* необходимо уточнить длительность сигнала ССИ. Последнее обстоятельство обусловлено тем, что, для получения максимального значения эхо-сигнала в измерительной катушке, второй зондирующий радиочастотный импульс должен быть расположен как можно ближе к первому с целью получения сигнала максимальной амплитуды, что обеспечивает более высокую точность измерения. Если же интервал между импульсами будет меньше T(длительность переходного процесса спада ССИ), то результат измерения неверным. Поэтому минимальное амплитуды эхо-сигнала будут расстояние между зондирующими импульсами должно превышать величину Т. Длительность второго зондирующего импульса t_{ij} должна быть в два раза больше первого [5], чтобы обеспечить поворот результирующего вектора намагниченности на угол что обусловлено методикой проведения исследований.

Типовое соотношение длительностей подачи зондирующих сигналов и реакция образца, в виде временной диаграммы, представлены на рис. 4.

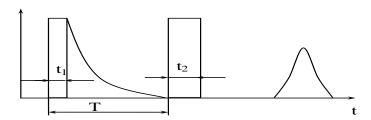


Рис. 4. Схема подачи зондирующих импульсов спектрометра ЯМР

Выводы. Предложена и обоснована методика по выбору параметров частоты заполнения зондирующих импульсов и режима измерения сигнала при проведении исследований на спектрометре ЯМР.

Показано, что компьютерные технологии дают возможности для практической реализации предложенных технических решений. Применение подобных решений позволит повысить точность и достоверность получаемых результатов исследования, проводимых с применением спектрометров ЯМР.

Дальнейшая задача, которая должна быть решена с целью повышения уровня автоматизации измерений на спектрометре $\mathrm{ЯMP}-\mathrm{это}$ создание программно-аппаратных средств, позволяющих в

автоматическом режиме по определенному алгоритму изменять временные параметры между зондирующими импульсами с одновременной регистрацией амплитуды эхо-сигнала и вычислением параметров исследуемого продукта.

Решение подобных задач позволит впоследствии создать необходимые предпосылки по внедрению автоматизированных измерительных систем по проведению подобных экспериментов, что в значительной степени сократит как время проведения исследований, так и повысит их эффективность.

Предложено устройство, способ и алгоритм минимизации времени и усталости образца при подготовке эксперимента на основе микроконтроллера STM32. Применение данного устройства и алгоритма позволяет на 40 % снизить затраты времени на позиционирование образца и повысить стабильность условий проведения эксперимента в целом.

Список литературы: 1. Beadle R. Magnetic resonance spectroscopy in myocardial disease / R. Beadle, M. Frenneaux // Expert Rev. Cardiovasc. Ther. – 2010. – № 8. – P. 269-277. 2. Эрнст Р. ЯМР в одном и двух измерениях / Р. Эрнст, Дж. Боденхаузен. – М.: Мир, 2000. – 711 с. 3. Пивоваров П.П. Теоретична технологія продукції громадянського харчування / П.П. Пивоваров. - Харків: Ранок, 2000. - 116 с. 4. Dey K.K. Trading sensitivity for information: Carr-Purcell-Meiboom-Gill acquisition in solid-state NMR /K.K. Dey, J.T. Ash, N.M. Trease, P.J. Grandinetti // J. Chem. Phys. - 2010. - 133 p. 5. Неронов Ю.И. Ядерный магнитный резонанс в томографии и в спектральных исследованиях. Учебное пособие / Ю.И. Неронов, З. Гарайбех / СПб.: Санкт-Петербургский государственный институт точной механики и оптика (Технический университет), 2003. – 84 с. 6. Даниленко О.Ф. Автоматизована система виміру ЯМР спектрометра / О.Ф. Даниленко, О.Г. Дьяков, О.І. Торяник // Прогресивні техніка та технологія харчових виробництв ресторанного господарства і торгівлі. Зб. наук. праць. Вип. 2. Харків. – 2005. – № 14. – С. 314-342. 7. Олсон Г. Цифровые системы автоматизации процесса управления / Г. Олсон, Д. Пиани / - СПб.: Невский диалект, 2002. – 254 с. 8. Аракелян Г. Математика и история золотого сечения: монография / Г. Аракелян. – М.: Логос, 2014. – 136 с. **9.** Пантилеев А.В. Методы оптимизации в примерах и задачах / А.В. Пантилеев, Т.А. Летова. - М.: Высшая школа 2005. - 302 с. 10. Кнут Д. Конкретная математика. Основание информатики / Д. Кнут, Р. Грэхем, О. Паташник. – М.: Мир, Бином. Лаборатория знаний, 2006. – 211 с.

References:

- **1**. Beadle, R. and Frenneaux, M. (2010), "Magnetic resonance spectroscopy in myocardial disease", *Expert Rev. Cardiovasc. Ther.* No.8, pp. 269-277.
- **2.** Ernst, R. and Bodenhausen, J. (2000), *NMR in one and two dimensions*. Mir, Moscow, 711 p.
- 3. Brewers, P. (2000), Theoretical technology products catering. Ranok, Kharkiv, 116 p.
- **4.** Deym, K.K., *Ash J.T., Trease N.M., Grandinetti P.J.* (2010), "Trading sensitivity for information: Carr-Purcell-Meiboom-Gill acquisition in solid-state NMR". *Journal Chem.Phys*, Vol. 5, pp. 133-143.
- **5.** Neronov, Y.I. and Garaybeh, Z. (2003), *Nuclear magnetic resonance imaging and spectral studies*. Textbook St. Petersburg State Institute of Fine Mechanics and Optics (Technical University), St. Petersburg, 84 p.

Вестник НТУ "ХПИ", 2016, № 21 (1193)

- **6.** Danilenko, O., Dyakov, O. and Toryanik, O. (2005), "Automatized system vimiru NMR spectrometer". Progressive technique and technology of food production and restaurant industry trade, No. 14. Kharkiv, pp. 314-342.
- **7.** Olson, G. and Piani, D. (2002), *Digital automation management system process*. Nevsky Dialect, St. Petersburg, 254 p.
- **8.** Arakelian, G. (2014), *Mathematics and history of the golden section monograph*. Logos, Moscow, 136 p.
- **9.** Pantileev, A. Letov, T. (2005), *Optimization methods in examples and problems*. Higher School, Moscow, 302 p.
- **10.** Knuth, D., Graham, R. and Patashnik, O. (2006), *Concrete Mathematics. Base Informatics*. Mir, Binomial, Knowledge Laboratory, Moscow, 211 p.

Поступила (received) 20.02.2016

Статью представил д-р техн. наук, проф. НТУ "ХПИ" Поворознюк А. И.

Danilenko Alexander, Cand. Tech. Sci., Docent

Natoinal Tehnical University "Kharkiv Polytechnic Institute"

Str. Kirpicheva, 21, Kharkov, Ukraine, 61002

Tel.:(057)707-61-65, e-mail: aleks.danilenko@gmail.com

ORCID: 0000-0002-0089-3510

Oleksuk Vitalij, Master

Natoinal Tehnical University "Kharkiv Polytechnic Institute"

Str. Kirpicheva, 21, Kharkov, Ukraine, 61002

Tel.:(095)305-16-48, e-mail: nigtstalker_07@mail.ru

ORCID: 0000-0003-4841-458X

Djakov Alexander, Cand. Tech. Sci., Docent

Kharkiv National University of food technology and trade

Str. Klochkovskaya, 131, Kharkov, Ukraine, 61015

Tel.:(057)732-44-26, e-mail: djakov.alex.georg@gmail.com

ORCID: 0000-0002-8163-8019

УДК 621.314.7

Забезпечення стабільності вимірювань в установці ЯМР-спектрометра / Даниленко О.Ф., Дьяков О.Г. Олексюк В.Е. // Вісник НТУ "ХПІ". Серія: Інформатика та моделювання. — Харків: НТУ "ХПІ". — 2016. — \mathbb{N} 21 (1193). — С. 11 — 19.

Проведено аналіз впливу параметрів вимірювальної установки ЯМР-спектрометра на інтенсивність луна-сигналу, що приймається. Запропоновано пристрій та обгрунтовано підхід щодо підвищення стабільності роботи та точності вимірювання параметрів на установці ЯМР-спектрометра, шляхом підтримування стабільної роботи високочастотного генератора, що задає побудованого на основі використання синтезатора частоти. Синтезатор частоти реалізовано апаратними засобами з використанням обчислювальної техніки. Розглянута можливість реалізації даного алгоритму на мікроконтролері. Іл.: 4. Бібліогр.: 10 назв.

Ключові слова: ЯМР-спектрометр, синтезатор частоти, обчислювальна техніка, вимірювання параметрів, луна-сигнал, мікроконтролер.

УДК 621.314.7

Обеспечение стабильности измерений в установке ЯМР-спектрометра / Даниленко А.Ф., Дьяков А.Г. Олексюк В.Э. // Весник НТУ "ХПИ". Серия: Информатика и моделирование. — Харьков: НТУ "ХПИ". — 2016. — № 21 (1193). — С. 11—19.

Проведен анализ влияния параметров измерительной установки ЯМР-спектрометра на интенсивность принимаемого эхо-сигнала. Предложено устройство и обоснован метод повышения стабильности режима работы установки ЯМР-спектрометр и точности измерения параметров контролируемого вещества, путем поддержки стабильной работы высокочастотного задающего генератора, построенного на основе применения синтезатора частоты. Синтезатор частоты реализован аппаратными средствами с использованием вычислительной техники. Рассмотрена возможность реализации предложенного алгоритма на микроконтроллере. Ил.: 4. Библиогр. 10 назв.

Ключевые слова: ЯМР-спектрометр, синтезатор частоти, измерение параметров, эхо-сигнал, микроконтроллер.

UDK 621.314.7

Increase of stability measurings parameters of setting NMR / Danilenko A.F., Djakov A.G., Oleksuk V.E. // Herald of the National Technical University "KhPI". Subject issue: Information Science and Modelling. – Kharkov: NTU "KhPI". – 2016. – № 21 (1193). – P. 11 – 19.

The analysis of influencing of parameters of the measuring setting is conducted NMR-spectrometer on intensity of the adopted echo-signal. Offered and grounded method of increase of stability of the mode of operations of setting of NMR-spectrometer. A method is offered and grounded for the increase of exactness of measuring of parameters of the controlled matter. Stable work is supported by a high-frequency master clock, Generator is built on the basis of application of synthesizer of frequency. The synthesizer of frequency is realized vehicle with the use of facilities of the microcontroller. Figs.: 4. Refs.: 10 titles.

Keywords: synthesizer of frequency, measuring of parameters, measuring setting, NMR-spectrometer, echo-signal, microcontroller.