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1. Introduction. The problem statement. System tensor modeling
plays an important role in various fields of theoretical science and applied
researches. The concept of tensor goes back to Riemann's ideas of non-
Euclidean geometry on curved smooth surfaces presented in 1854 [1]. Tensor
calculus itself was introduced by Ricci-Curbastro (Italy) in 1887 primarily as
extension of vectors[2], and further developed by his student Levi-Civita ([3],
1899).

The tensor method of Ricci-Curbastro/Levi-Civita latter found its
application in general relativity theory (GRT) coauthored by A. Einstein and
M. Grossman in 1913 [4]. In subsequent decades, tensor analysis penetrated
other areas, and now included in advanced academic courses at technical
universities and engineering high schools [5 — 12]. Students often seem aware
of tensor’s importance, though, unless engaged in a dedicated course, tensor
remains covered in aveil of mystery [10].

An adequate insight of tensor by undergraduate students meets two
major issues: firstly, the lack in a clear presentation of tensors tied to what
students already know from other courses, such as vector algebra; secondly,
the use of cumbersome tensor notation and construction rules for high rank
tensors[10].

In this work, typical approaches considered towards introduction the
category of tensor in technical universities. Diverse alternative points of view
in understanding tensors have been studied, as well as logical aspects of
"tensor calculus architecture” cleared up. To our mind, a major challenge in
tensors perception by undergraduates is a seamless transition from intuitively
known "geometric vectors' to the core formalism of tensor calculus, i.e. to the
first rank covariant and contravariant tensors which are basic terms in various
high rank tensor forms,

Tensor analysis is a truly novel holistic insight on our world which
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extends far beyond traditional distinct academic disciplines like physics,
geometry, algebra etc. To understand complex tensors in geometrical
interpretation as abstract spatial forms (or spaces) with unusual properties, our
theoretical and empirical knowledge must be crucially rethought.

A cognitive point of view on matter is about to recognize that spatial
structure of the world is not more than an individual model of a local physical
environment which is perceived through human sensations and/or various
instruments of observation. Thus, no "absolute space" exists, and none
"objective coordinate" can be measured for "a point" or "vector" in either
physical or geometrical orthonormal coordinate basis.

For this reason, with respect to tensors, the notorious question arises
again. What comes first — matter or consciousness? In other words, what is
primarily predetermined in a formal theory (physical experiment or its
geometrical model, vector as object or vector space, tensor as geometrical
image or tensor as an abstract algebraic coordinate form)? Without convincing
and consistent logical doctrine, most academic tutorials on tensor analysis run
the risk of being incomprehensible to the target audience.

Numerous attempts at constructive introduction to tensor analysis for
students of technical universities, as well as obvious difficulties in
understanding this discipline, once again reflected the known problem of
axiomatic foundation of mathematics. This problem is usually associated with
Cantor’s set theory (also known as "naive" set theory) introduced by German
mathematician Georg Cantor in 1879 — 1883 [13].

The Cantor's set theory became a common axiomatic platform of classic
functional analysis, and till, remains a fundamental universities course,
though sharp discussions on this theory triggered since end of XI1X century.
Actually, the Cantor's "naive" set theory was designed as a "flat" (or single-
level) formal grammar, where all the terms blend into one layer framework
without any hierarchical subordination. Because of this, the "naive" set theory
is experiencing internal contradictions. Philosophers and mathematicians of
19-20 centuries (Bertrand Russell, J. Von Neumann, Kurt Godel, Paul
Bernays, and others) discovered some logical problems caused due to the
Cantor’s set theory.

Bertrand Russell pointed at one of those problems in 1901 (aka
"Russell’s paradox” or Russell'santinomy [14]. In simple words, the
"Russell’s paradox" sounds as a rhetorical question ("is the set of all sets a
subset of itself?") for which neither "yes" nor "no" are right answers.

The same paradox was earlier discovered by E. Zermelo (1899), but not
published. At the end of the 1890s G. Cantor himself realized the cognitive
issues of his set theory [15].
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The nature of mentioned above logical issues and paradoxes is that
average human brain needs some explicit hierarchy of terms and notions for
clear perception a complex logical construction. In fact, the underlying
background of any serious formal theory should rely on statistics retrieved
from empirical data.

Therefore, the axiomatic foundation of a well-tailored theory is a
particular delicate shell of empirical knowledge that accumulates and reflects
previous experience. And if the axiomatic background of a theory is not
enough clear and transparent for target audience, then the whole building of
abstract theory will inevitably fall apart, no matter how beautiful and strict
there seemed the theory itself.

An outstanding result in radical rethinking the overall framework of
math theory and its axiomatic basis for a physical system was exhibited by the
greatest physicist and mathematician of the 20th century J. Von Neumann in
his work on math foundation of quantum mechanics ([15], 1927). To design a
consistent math model of quantum mechanics system, Neumann had to
additionally create a fundamentally new set theory based on a multilevel class
hierarchy (von Neumann classes) as an alternative to Cantor’s single-level set
theory ([16], 1928).

The essence of Neumann's class theory is that various "sets' in the
formal theory are divided into hierarchy classes, forming a multi-level logical
scheme of concepts. New terms of theory are built as functions of
subordinated argument-terms, and the rank of a new function-term is
determined by the highest rank among the argument-terms. No recursive
definitions of terms are admitted (such as "set of all sets' in Russell’ s paradox
mentioned above).

By the middle of the 20th century, joint efforts of J. Von Neumann,
K. Godel and P. Bernays, resulted in a coherent axiomatic basis for the set
theory (aka NGB axioms [17], 1954). Despite NGB axioms issued about 70
years ago, many conventional courses on functional analysis are still based on
the “naive’ set theory of G. Cantor ([18 — 20]).

The careful consideration of tensor methodology exhibited in university
textbooks, indicates similar problems of cognitive nature, tied to non-classified
"flat" categorization of different terms like "vector", "space”, "tensor" etc.
while introducing the terminology and formalisms of tensor calculus.

On this premise, the axiomatic foundation of tensor analysis is not
accomplished yet, and therefore, new researches in this realm needed.

2. Related publications survey. Objectives. In this section, some
common undergraduate tutorials on tensors issued in English within 2002 —
2016, are discussed.
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Reference 1.

Consider the introduction to tensors for students of physics and
engineering in NASA Glenn research center, Ohio ([5], 2002). Have a look at
pages 4/8 and 5/9 of the text (where the first number "4" means the page
number in content table, while the second number "8" means related page in
"pdf* file). The given text claims the following:

Page 4/8:
e Scalar: Tensor of rank 0.  (magnitude only — 1 component)
e Vector: Tensor of rank 1. (magnitude and one direction — 3 components)

This terminology is suggestive. Why stop at rank 1? Why not go onto rank 2, rank 3, and so on.

e Dyad: Tensor of rank 2. (magnitude and two directions — 3’=9 components)

e Triad: Tensor of rank 3. (magnitude and three directions — 3° = 27 components)
» Etcetera...

Page 5/9:

In constructing a dyad product from two vectors, we form the term-by-term product of each of
their individual components and add. If U and V are the two vectors under consideration, their
dyad product is simply UV. The dyad product UV is neither a dot nor a cross product. It is a
distinct entity unto itself. If U =u,i + upj + uzsk and V = vji + v,j + v;Kk, then

UV = uyvjii + uywaij + uyvsik + wpvji + -

where i, j, and Kk are unit vectors in the usual sense and ii, ij, ik, etc. are unit dyads. In forming
the product UV above, we simply “did what came naturally” (a favorite phrase of another of my
professors!) from our knowledge of multiplying polynomials in elementary algebra. Notice that,
by setting u;vy = 1, U;va = W2, etc., this dyad can be rewritten as

UV = ppii + poij + pozik + poji + -

Our remarks on the file [5] are the following.

1) Neither previously in the [5] nor in this text fragment of [5], the
operations like ii,ij are defined. Suppose that unitary vector dyads ii,ij are
scalar product multiplication, then must be: ii =1, ij = cosj (i, ]), etc. Because
of that, the dyad uv must result in a single number.

2) The only formal definition in [5] for a tensor of rank n is brought
above (scalar — O rank tensor, vector — 1 rank tensor, dyad — 2 rank tensor,
triad — 3 rank tensor etc.).

Reference 2.

The advanced version of [5] is "Foundations of Tensor Analysis for
Students of Physics and Engineering” ([6]), which was published by the
NASA Glenn research center in 2005.

Page 11/17 in [6] says:
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Multiplication —As with vector multiplication, dyad
multiplication may take one of several forms. The dyad
products to be examined in the following sections are
the inner product, the cross product, the product of a
dyad and a scalar, and the direct product of two dyads.

Our remarks on the file [6] are the following.

1) Here introduced 4 special types of "dyad multiplications" (or "dyad
products’): "inner product”, "cross product”, "product of dyad and scalar”,
"direct product of two dyads".

2) On the other hand, in mathematics also know very similar terms like
"dot product”, "scalar product”, "inner product”, "outer product of vectors',
"vector product”, "cross product”, "dyad product”, "scalar multiplication",
"vector multiplication” etc. [21]. Such collection of similar terms seems to be
over complicated and surplus for consistent definition the tensor entity.

3) Inthe content table of [6] the first mention of tensor is:

"Metric or Fundamental Tensor 24" | means, that "tensor" is not
introduced formally as itself.

Reference 3.

"Tensors and their applications’, Azad Inst. of technology (India), 2006
[7]. The Preface of this file on page /10 says. A quantity having magnitude
only iscalled "scalar" and a quantity with magnitude and direction both, called
"vector". But certain quantities are associated with two or more directions,
such a quantity is called "tensor".

Next, page 6/23 of [7], section "Tensor algebra’ says:

2.1 INTRODUCTION

A scalar (density, pressure, temperature, etc.) is a quantity whose specification (in any coordinate
system) requires just one number. On the other hand, a vector (displacement, acceleration, force, etc.)
is a quantity whose specification requires three numbers, namely its components with respect to some
basis. Scalers and vectors are both special cases of a more general object called a tensor of order
n whose specification in any coordinate system requires 3" numbers, called the components of tensor.
In fact, scalars are tensors of order zero with 3° = 1 component. Vectors are tensors of order one with
3!'=3 components.

Page 7/24 says.
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2.3 COVARIANT AND CONTRAVARIANT VECTORS (TENSOR OF RANK ONE)

Let (x', x%, ..., ¥") or x' be coordinates of a point in X-coordinate system and (¥', ¥>,...,¥") or X' be
coordinates of the same point in the Y-coordinate system.

Let A, § = 1,2, ..., n(or 4", 4, ..., A") be n functions of coordinates x', x°, ..., x"
in X-coordinate system. If the quantities A* are transformed to A* in Y-coordinate system then according
to the law of transformation

_E_afiA,. i
A—y or A—axTA'

Then A4’ are called components of contravariant vector.

Similarly, covariant tensors of rank 1 are introduced in [7]. Our remark
onthefile[7] is: The two coordinate systems are used (X and Y) which are not
explicitly bound herewith in declarations.

Reference 4.

"Introduction to vectors and tensors’, Houston, Texas, 2010 [8].

Consider the terminology used in the file [8].

Page /5: "Intersection”, "Sum", "Direct Sum of Subspaces’, "Factor
Spaces’, "Inner Product Spaces', |Reciprocal Basis|.

Page 62/: "The factor space is also called a quotient space”.

Page 76/ "Reciprocal Basis'(an analog of dual basis).

Page 158/166: " Spectral Decomposition for Hermitian Endomorphisms’

U=(A"A) " = il;.j P,
=

Section 31. Linear Functions, the Dual Space.

Page 203/211: vector in a space itself vs. covector in a dual space.
Section 32. The Second Dual Space, Canonical 1somorphisms.
Section 33. Multilinear Functions,

Tensors, page 218/226:

More specifically, a tensor of order (p, g) on ¥, where pand q are positive integers, is a (p+q)-
linear function

YV *Ex XV *xY %o x¥ >R (3F)
(L SR, VS ——

p times q times

Our remark on the file [8] is. that was the first mention of "tensor" in the
content table (it is straight multi rank tensor).

Tutorial reference 5.

"Tensors: A guide for undergraduate students’, 2013 [9].

Page 498/2: "A guide on tensors is proposed for undergraduate students
in physics or engineering that ties directly to vector calculus in orthonormal
coordinate systems. We show that once orthonormality is relaxed, a dual basis,
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together with the contravariant and covariant components, naturally emerges.
Manipulating these components requires some skill that can be acquired more
easily and quickly once a new notation is adopted".

Consider terminology: Page 499/3:

"Between any two vectors is defined a dot (or scalar) product, a
commutative rule that associates areal number to each pair of vectors'. "In the
3D space, across (or vector) product is defined".

Consider definition of tensor.

Page 500/4:

jectivity character we are after. Quantities with such a
character and defined in an N-dimensional space are called
tensors and, more specifically, rth-rank tensors if they have
N" components. Scalars, being single-component quantities,
are then zero-rank tensors, while vectors, being N-compo-
nent quantities, are first-rank tensors. Higher-rank tensors
are...well, tensors!

Page 501/5:

Any vector can be expressed as a linear combination of
the basis {e,} so that

A = A,, (16)

which is equivalent to Eq. (3) except for the change in nota-
tion, where the components of the vector A in the basis {e,}
have been labelled with an upper index. However, if one
asks if A“ =e,-Aor A-B =) A’B“ still hold as in Egs.
(4) and (5), the answer is negative:

Our remarks on thefile [9] are:

1) Quantities with such a character and defined in an N-dimensional
space are called tensors and, more specifically, rth-rank tensorsif they have Nr
components.

Reference 6. "A gentle introduction to tensors’, 2014 [10].

Page 1/2:

"Tensors and transformations are inseparable. To put it succinctly,
tensors are geometrical objects over vector spaces, whose coordinates obey
certain laws of transformation under change of basis. Vectors are smple and
well-known examples of tensors, but there is much more to tensor theory than
vectors'.
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"I have used the coordinate approach to tensors, as opposed to the formal
geometrical approach. Although this approach is a bit old fashioned, | ill find
it the easier to comprehend on first learning, especially if the learner is not a
student of mathematics or physics".

Page 4/5:

Consider two bases (e}, e3), which we will henceforth call the old basis, and
(€1, e2), which we will call the new basis. See, for example, Figure 1.4, in
which we have brought the two bases to a common origin.

Since (e, e3) is a basis, each of the vectors (€1, €2) can be uniquely expressed
as a linear combination of (e, esz), similarly to (1.1):

él = 815% ols 82812

1.3
ég = 81521 aF 82822 ( )

Page 14/15:

Vectors, covectors, and linear operators are all special cases of tensors. We
will not attempt to define tensors in abstract terms, but settle for a coordinate-
based definition, as follows.

A tensor of type (or valency) (r,s) over an n-dimensional vector space is an
object consisting of n"** coordinates, denoted by the generic symbol a;
and obeying the following change-of-basis transformation law:
G =T Teait S ... S (1.28)
Our remarks on the file [10] are the following.
1) Terminology: "old basis', "new basis', "vector", "covector", "linear
operators', "tensor valency".
2) "We will not attempt to define tensors in abstract terms...".

Reference 7. "Tensor Analysis and Elementary Differential Geometry
for Physicists and Engineers’, Chapter 2 — Tensor Analysis, Berlin, 2014 [11].

Page 36/2 says.
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The definition of tensors is based on multilinear algebra with a multilinear map.
We consider the real vector spaces U,,..., U, and their respective dual vector
spaces Vi,..., V,,. Each of their vector spaces belongs to the finite N-dimensional
space R", the image vector space W, to the real space R. A mixed tensor of type
(m, n) can be defined as a multilinear functional T that maps an (m + n) tuple of
vectors of the vector spaces U and V into W (Fecko 2011) (Fig. 2.1):

T: (U x---xU,) x (Vi x:---xV,)—W

N N N N
R x-;-xR x RY x g x R — R 2.1)

ncopies m copies

(W, .. vy, .. V,) — T(uy, .. w3 vy, ..., v,) €R

Our remarks on the file [11] following: This is a typical abstract
definition of general case tensor form.

Reference 8. "Introduction to tensor calculus’, Dep. of Physics &
Astronomy, Univ. College, London, 2016 [12].

Pages (5-6)/(6—7):

"Vectors are broadly geometric objects which are uniquely identified by
their magnitude (length) and direction in a presumed underlying space”. "At
this early stage in these notes, we generically define "tensor" as an organized
array of mathematical objects such as numbers or functions’.

"Non-indexed (lower or upper case) bold face Latin letters (e.g. a, A) are
used for vectors. The exception to this is the basis vectors where indexed bold
face lower or upper case symbols are used”.

"Non-indexed upper case bold face Latin letters (e.g. A, B) are used for
tensors (i.e. of rank > 1)". "Indexed light face italic symbols (e.g. a and B,-"')
are used to denote tensors of rank > 0 in their explicit tensor form (index
notation). Such symbols may also be used to denote the components of these
tensors'.

Page 11/12: "A tensor is an array of mathematical objects (usually
numbers or functions) which transforms according to certain rules under
coordinates change. In a d-dimensional space, a tensor of rank-n has d"
components ...".

Page 13/14: "Each tensor index should conform ... either covariant or
contravariant. For orthonormal Cartesian coordinate systems, the two variance
types (i.e. covariant and contravariant) do not differ...".

Our remarks on the file [12] following. 1) Much attention paid to
accurate and consistent notification of the terms. 2) Given definition of tensor
is not explicit. 3) It is claimed, that in Cartesian coordinate system both two
principal forms of tensor (covariant and contravariant) match up.

Page 30/31 says about the tensor multiplication.
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e This may also be called outer or exterior or direct or dyadic multiplication, although
some of these names may be reserved for operations on vectors.

e On multiplying each component of a tensor of rank r by each component of a tensor of
rank k, both of dimension m, a tensor of rank (r + k) with m"** components is obtained

where the variance type of each index (covariant or contravariant) is preserved, e.g.

AtBJ' = O‘J (53)

Page 31/32: "Not every tensor can be synthesized as a product of lower
rank tensors’.

Page 32/33: "In general, the inner product is not commutative. When one
or both of the tensors involved in the inner product are of rank > 1 the order of
the multiplicands does matter". Another fragment of this page is:

e As indicated before (see § 2.6.4), the dot product of two vectors is an example of the
inner product of tensors, i.e. it is an inner product of two rank-1 tensors to produce a
rank-( tensor:

lab| ij =ab  contraction a-b=qgb (59)

Our remarks on the file [12] (continued).

4) Thetensor multiplication like A looks similar to matrix operations.

5) The statement on p.31/32 contradicts the general tensor definition.

6) The statement on p. 32/33 about the cumulativeness indicates the non-
consistence of given tensors introduction. Another statement provokes
confusion around the terms "dot product”, "inner product of tensors', "outer
product”, "scalar product” etc.

To our mind, too many identical terms are involved in such explanation.
Also many special operations added into tensor algebra: contraction (p.31/32),
permutation and quotient rule (p. 34/35), which is close to matrix algebra.

Analyzing the cited above tutorials on tensor calculus for students, wel'll
highlight the following cognitive aspects of tensor method.

1) There is no common definition of tensor among the specialists. Some
of them introduce tensor as a special type of vector/covector multiplication
(vectors understood as first rank tensors); other ones determine tensor through
multiplication of vector spaces and dual vector spaces, taken from a common
Euclidian space.
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2) The core issue of a dedicated introduction to tensor analysis is how to
explicitly define the first rank covariant and contravariant tensors.

3) The "plane" thesaurus of basic terms in known textbooks on tensors
(vector, space, tensor etc.) leads to logical contradictions noted above.

Objective of this work is outlining a cognitive tensor model of a system
on the basis of Von Neumann classes of hierarchy.

3. Outlines of tensor model based on Von Neumann classes

In this section core outlines and definitions are presented for
construction a holistic tensor model of a physical system based on hierarchical
set theory by J. Von Neumann (aka Neumann's classes). The following
methodological principles are proposed for a cognitive tensor modeling.

1) In a cognitive tensor model, the standard matrix algebra forms the
operational basis (first of all, the well-known matrix multiplication rule, [22]).
Therefore, no special operations and related cumbersome terms will be
introduced for tensors (like Einstein’s summation notation x=x€', dyad

productuv , tensor multiplication u A v, tensor components etc.).

2) In a cognitive tensor model, the set of empirical data in some physical
units (e.g. power, energy) will form a core layer (zero-order Neumann’s class)
for construction subsequent tensor-related terms and objects (high-order
Neumann'’s classes). Therefore, no predetermined spaces and their bases are
needed more (like vector space, factor space, quotient space, reciprocal space,
orthonormal basis, Cartesian basis, norlmal basis, affine basis etc.)a. Only two
gpatial categories (i.e. vector space U and dual vector spaceU) will be
determined over initially given matrix H of empirical data.

3) Inacognitive tensor model, one more type of vector coordinates will
be adopted (i.e. normal coordinates) in addition to conventional covariant and
contravariant coordinates. This admits an accurate axiomatic definition of the
first-rank covariant and contravariant tensors in terms of the first-order
Neumann's class.

Based on declared above principles, we present a consistent axiomatic
scheme for a cognitive tensor model of physical system. Let be given
Hermitian matrix of empirical data measured on a physical system in abstract

units of square magnitude (n?).

Axiom 1.

Let be given a nonsingular Hermitian matrix Hz of empirical data
measured on a physical system A in abstract units of square magnitude (mz) :
Matrix Hx considers be initial term of zero-order Neumann's class tied to
systemA .
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Axiom 2.
The Hermitian matrix Hz of empirical data measured on physical

system A in square magnitude units (mz), be mapped on a scalar product
<U>U> '=H; of an abstract vector rapper U:={U1,Uz,K} in linear

magnitude units (nt) = (m). The scalar product <U ﬁ> and vector rapper U

consider be terms of the first-order Neumann's class.
Axiom 3.

3.1. The vector rapper U in linear magnitude units (), which
predefined by its scalar product <U ﬁ> retrieved from Hermitian matrix

Hx ® (UxJ) of empirical data measured on a physical system A in square
A

magnitude units (nf) , determines a local in time Euclidian space E(HA ) tied
to the system A .

3.2. The Euclidian space E(Hj ) tied to the systemA , is defined by the
orthonormal coordinate basis &:={e,,e,,..} in physical units of an abstract
magnitude (1) due to the presentation the vector rapper u by the Hermitian
matrix U =+,/Hz of itsnormal coordinates in basis e.

Definition 1. Hermitian matrix U =+,/Hz of the normal coordinates in
basise with physical units of an abstract magnitude (rr) we define as

fundamental covariant (on rapper U) first rank tensor, which is determined in
local Euclidian space E(Hz ) [23].

Euclidian space E(H 4 ), basis & and fundamental tensor U consider be

terms of the first order Neumann's class. Along with the fundamental tensor
U, which is determined above, some other fundamental first rank covariant

tensors can be defined; all these tensors we call "fundamental" because of their
common origin from Hermitian matrix Hz of empirical datatied to physical

system A . Therefore, all the fundamental tensors are nonsingular (have their
inverse forms), and each of a fundamental tensor uniquely defines the local

Euclidian space E(HA ).
Definition 2. Let an arbitrary z be a fundamental (nonsingular) first-rank
tensor, which is covariant on some vector rapper Z i E(Hz) in a local
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Euclidian space E(Hz ). The object Z := z"*we define contravariant on 2 first
rank tensor in E(H ).

Definition 3. If Aand B are fundamental first rank tensors, the matrix
multiplication C:= A xB~ we define as second-rank fundamental tensor in a
local Euclidian space I'E(H;\ ); the type of tensor C is defined by the types of

multiplication members. Four types are possible hereby:
double covariant tensor C,;, double contravariant tensor C*®, covariant

on A and contravariant on B tensor C,®, contravariant on A and covariant on

B tensor C*s .
As matrix multiplication is not commutative operation, four other
fundamental tensors of second rank can be constructed by A andB :

C:=BxA" ® Cg,,CP* Cz", CBa.

All the fundamental tensors we declare as members of the first-order
Neumann's class.

Definition 4. If an arbitrary nonsingular tuple of vectors \'/ is presented
by the matrix V of normal coordinates in orthonormal basis & of Euclidian

space E(Hz ), then matrix V. we define as spawned covariant on V' first rank

tensor, and matrix V :=V '~ spawned contravariant on V first rank tensor in
E(Hz ). The multiplication of r first-rank spawned tensors we define as r-rank

spawned tensor. All the spawned tensors we declare as members of the
second-order Neumann'’s class (concisely called "tensors').

Conclusion.

Tensor methodology is a powerful mathematical tool used in physics,
system engineering and others realms. In technical universities, variety of
approaches is used for tensors study. However, in known guides for
undergraduate students tensors till remain about a mystery. Academic
disciplines on tensors are not provided by the solid theoretical foundation, and
most of the formal terms are commonly determined in a "flat" logical
architecture inherent to Cantor set theory which suffers known paradoxes.

In present paper there applied hierarchical Neumann'’s classes to provide
a holistic cognitive tensor model of a physical system. Three Neumann's
classes are introduced: class O for empirical data on system relationships, class
1 for fundamental tensors, and class 2 for spawned tensors (concisely called
"tensors').

This approach opens the way for further strict classification of tensors, in
their connection with vector properties in elementary geometry and classical
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functional analysis in finite-dimensional Euclidean spaces. Eventually, the
introduction to tensor algebra behind the Neumann's classes becomes more
comprehensive and understandable by the target audience.
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The paper focuses issues of tensor calculus study in technical universities. To
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tensor model of a physical system on the base of hierarchical John Von Neumann
classes. Refs.: 23 titles.
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