УДК.591.6

DOI: 10.20998/2411-0558.2019.13.02

М. АТАМИРЗАЕВ, канд. физ.-мат. наук, доц. ТИИМСХ, Ташкент, **Н. ЮЛДАШЕВ,** канд. физ.-мат. наук, доц. ТИИМСХ, Ташкент

ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ ТРЕХМЕРНЫХ ТУРБУЛЕНТНЫХ СТРУЙ РЕАГИРУЮЩИХ ГАЗОВ

В данной работе приводятся модифицированные модели для вычисления турбулентной эффективной вязкости, метод расчета и некоторые численные результаты исследования трехмерных турбулентных струй реагирующих газов, истекающих из сопла прямоугольной формы и распространяющихся в затопленном (спутном) потоке воздуха при диффузионном горении. Ил.: 4. Библиогр.: 18 назв.

Ключевые слова: турбулентные струи; вязкость; сопло; реагирующие газы; эффективная вязкость.

Постановка проблемы анализ литературы. Основным инструментом исследования газодинамики, тепломассообмена турбулентных струйных течений многокомпонентных газовых смесей математическое моделирование, которое физического эксперимента нередко экономически эффективнее и часто является единственно возможным методом исследований. В общем случае моделирование турбулентных струйных течений реагирующих газовых смесей основано на общепринятой системе связанных уравнений в частных производных, выражающих законы сохранения массы, импульса, энергии и вещества [1-4].

В работах [5 — 10] приведены, в основном, результаты экспериментальных и теоретико-численных расчетов, посвященных исследованиям истечения воздуха, вытекающего из сопла прямоугольной формы.

В тоже время, проблема математического моделирования трехмерных струйных течений реагирующих газовых смесей до настоящего времени остается в механике одной из самых сложных [11—18]. Сложность рассматриваемой проблемы связана, с одной стороны, с незавершенностью теории турбулентности, а с другой, специфическими особенностями турбулентных течений при наличии химических реакций.

Целью работы является численное исследование истечения трёхмерной турбулентной струи газов из сопла прямоугольной формы.

Постановка задачи. Рассмотрим реагирующую струю, вытекающую из сопла прямоугольной формы и распространяющуюся в спутном (затопленном) потоке воздуха. В качестве начала координат декартовой системы выберем центр начального сечения струи: ось *ОХ*

© М. Атамирзяев, Н. Юлдашев, 2019

направлена вдоль струи, а оси OY и OZ параллельны сторонам сопла, размером 2a и 2b соответственно. Предположим, что течение симметрично относительно оси OX и плоскостей YOX, ZOX, которые образуют границы области интегрирования и позволяют рассматривать только одну четверть прямоугольной струи.

Такое течение описывается следующей параболизованной системой уравнений [1, 3, 4, 9, 10]:

$$\frac{\partial \rho u}{\partial x} + \frac{1}{L} \frac{\partial \rho v}{\partial v} + \frac{\partial \rho w}{\partial z} = 0, \tag{1}$$

$$\rho u \frac{\partial u}{\partial x} + \rho v \frac{1}{L} \frac{\partial v}{\partial y} + \rho w \frac{\partial w}{\partial z} = \frac{\partial P}{\partial x} + \frac{1}{L^2} \frac{\partial}{\partial y} \left(\mu \frac{\partial u}{\partial y} \right) + \frac{\partial}{\partial z} \left(\mu \frac{\partial u}{\partial z} \right), \tag{2}$$

$$\rho u \frac{\partial v}{\partial x} + \rho v \frac{1}{L} \frac{\partial v}{\partial y} + \rho w \frac{\partial w}{\partial z} = -\frac{\partial P}{L \partial y} + \frac{4}{3L^2} \frac{\partial}{\partial y} \left(\mu \frac{\partial v}{\partial y} \right) + \frac{\partial}{\partial z} \left(\mu \frac{\partial v}{\partial z} \right) - \frac{2}{3L} \frac{\partial}{\partial y} \left(\mu \frac{\partial w}{\partial z} \right) + \frac{1}{L} \frac{\partial}{\partial z} \left(\mu \frac{\partial w}{\partial y} \right),$$
(3)

$$\rho u \frac{\partial w}{\partial x} + \rho v \frac{1}{L} \frac{\partial w}{\partial y} + \rho w \frac{\partial w}{\partial z} = -\frac{\partial P}{\partial z} + \frac{4}{3} \frac{\partial}{\partial z} \left(\mu \frac{\partial w}{\partial z} \right) + \frac{1}{L^2} \frac{\partial}{\partial y} \left(\mu \frac{\partial w}{\partial y} \right) - \frac{2}{3L} \frac{\partial}{\partial z} \left(\mu \frac{\partial v}{\partial y} \right) + \frac{1}{L} \frac{\partial}{\partial z} \left(\mu \frac{\partial v}{\partial z} \right), \tag{4}$$

$$\rho u \frac{\partial H}{\partial x} + \rho v \frac{\partial H}{\partial y} + \rho w \frac{\partial H}{\partial z} = \frac{1}{L^2 \operatorname{Pr}_T} \frac{\partial}{\partial y} \left(\mu \frac{\partial H}{\partial y} \right) + \frac{1}{\operatorname{Pr}_T} \frac{\partial}{\partial z} \left(\mu \frac{\partial H}{\partial z} \right) + \left(1 - \frac{1}{\operatorname{Pr}_T} \right) \left[\frac{1}{L^2} \frac{\partial}{\partial y} \left(\mu u \frac{\partial u}{\partial y} \right) + \frac{1}{\operatorname{Pr}_T} \frac{\partial}{\partial z} \left(\mu \frac{\partial H}{\partial z} \right) \right]$$

$$+\frac{\partial}{\partial z}\left(\mu u\frac{\partial u}{\partial z}\right) + \frac{\partial}{\partial z}\left(\mu u\frac{\partial u}{\partial z}\right) + \frac{1}{L^{2}}\frac{\partial}{\partial z}\left(\mu w\frac{\partial w}{\partial y}\right) + \left[+\left(\frac{4}{3} - \frac{1}{\Pr_{T}}\right)\left[\frac{1}{L^{2}}\frac{\partial}{\partial y}\left(\mu v\frac{\partial v}{\partial y}\right) + \frac{\partial}{\partial z}\left(\mu w\frac{\partial w}{\partial z}\right)\right] - \frac{1}{2}\left[\frac{1}{2}\frac{\partial}{\partial z}\left(\mu v\frac{\partial w}{\partial z}\right)\right] - \frac{1}{2}\left[\frac{\partial}{\partial z}\left(\mu v\frac{\partial w}{\partial z}\right)\right] - \frac{1}{2}\left[\frac{\partial}{\partial$$

$$-\frac{1}{L}\frac{\partial}{\partial y}\left(\frac{2}{3}\mu v\frac{\partial w}{\partial z}\right) + \frac{1}{L}\frac{\partial}{\partial z}\left(\mu v\frac{\partial w}{\partial y}\right) + \frac{1}{L}\frac{\partial}{\partial y}\left(\mu w\frac{\partial v}{\partial z}\right) - \frac{1}{L}\frac{\partial}{\partial z}\left(\frac{2}{3}\mu w\frac{\partial v}{\partial y}\right), \quad (5)$$

$$\rho u \frac{\partial \overline{\overline{C}}}{\partial x} + \rho v \frac{1}{L} \frac{\partial \overline{\overline{C}}}{\partial y} + \rho w \frac{\partial \overline{\overline{C}}}{\partial z} = \frac{1}{L^2 S c_T} \frac{\partial}{\partial y} \left(\mu \frac{\partial \overline{\overline{C}}}{\partial y} \right) + \frac{1}{S c_T} \frac{\partial}{\partial z} \left(\mu \frac{\partial \overline{\overline{C}}}{\partial z} \right), \tag{6}$$

$$H = c_p + \frac{u^2 + v^2 + w^2}{2} + \sum_{i=1}^{N} c_i k_i^*,$$
 (7)

$$H = \rho T \sum_{i=1}^{N} \frac{c_i}{M_i}.$$
 (8)

Для вычисления эффективной турбулентной вязкости используем модифицированную алгебраическую модель, учитывающую молекулярный перенос, трехмерность и температурную неоднородность струи в виде

$$\mu = \mu_{\lambda} + \alpha \rho l^{2} \sqrt{\left(\frac{\partial u}{L \partial y}\right)^{2} + \left(\frac{\partial u}{\partial z}\right)^{2} + \left(\frac{\partial w}{L \partial y}\right)^{2}} \cdot \left(\frac{T}{T^{2}}\right)^{\alpha}, \tag{9}$$

а также подключение уравнения кинетической и диссипации кинетической энергии турбулентности для вычисления турбулентной вязкости ("*k*–*є*" модель), имеющего следующий вид:

$$\rho u \frac{\partial k}{\partial x} + \rho v \frac{\partial k}{\partial z} + \rho w \frac{\partial k}{\partial z} = \frac{\partial}{L^2 \partial y} \left(\frac{\mu_T}{\sigma_k} \frac{\partial k}{\partial y} \right) + \frac{\partial}{\partial z} \left(\frac{\mu_T}{\sigma_k} \frac{\partial k}{\partial z} \right) + G - \rho \varepsilon, \tag{10}$$

$$\rho u \frac{\partial \varepsilon}{\partial x} + \rho v \frac{\partial \varepsilon}{\partial z} + \rho w \frac{\partial \varepsilon}{\partial z} = \frac{\partial}{L^2 \partial y} \left(\frac{\mu_T}{\sigma_k} \frac{\partial \varepsilon}{\partial y} \right) + \frac{\partial}{\partial z} \left(\frac{\mu_T}{\sigma_k} \frac{\partial \varepsilon}{\partial z} \right) + \left(C_1 G - C_2 \rho \varepsilon \right) \frac{\varepsilon}{k}, \quad (11)$$

где

$$G = \mu_T \left[\left(\frac{\partial u}{L \partial y} \right)^2 + \left(\frac{\partial u}{\partial z} \right)^2 \right], \quad \mu_T = \frac{C_\mu \rho k^2}{\varepsilon}. \tag{12}$$

В уравнениях (1) – (12) u, v, w – составляющие скорости по осям x, y, z; k, ε – кинетическая энергия турбулентности и ее диссипации; p, P, T – плотность, давление и температура смеси; R – универсальная газовая постоянная; $Pr_{\rm T}$, $Sc_{\rm T}$ – турбулентное число Прандтля и Шмидта; μ – коэффициент динамической эффективной турбулентной вязкости; c_p – теплоемкость смеси при постоянном давлении; c_i , k_i * – концентрация и теплота образования i-й компоненты; N – число компонентов смеси; ∞ – эмпирическая постоянная Кармана; α – показатель, учитывающий

температурную неоднородность струи; $\mu_{\lambda} = const \cdot T^{0.64}$; l — длина пути перемешивания; C_1 , C_2 , $C\mu$, σ_k , σ_z — эмпирические константы "k– ϵ " модели турбулентности. Система уравнений (1) — (12) приведена в безразмерном виде, выбрав в качестве масштаба длин величину — b, для скоростей — u_2 , плотности — ρ_2 , давления — $\rho_2 u_2^2$, полная энтальпия и теплота образования i-й компоненты — u_2^2 , эффективной турбулентной вязкости — $b\rho_2 u_2^2$, теплоемкости при постоянном давлении — (R/M_I) , температуры — $u_2^2/(R/M_1)$, молекулярных весов — M_1 , кинетической энергии турбулентности и ее диссипации соответственно — u_2^2 и u_2^3/b , а также безразмерное входное сечение сопла в квадратную область с помощью формулы $v=\overline{v}/L$.

Уравнение концентрации (6) написано в форме консервативной функции Шваба-Зельдовича относительно массовой концентрации *i*-ых компонентов, позволяющее свести число уравнений с источниками до одного для четырех компонентной смеси. Предполагается, что реакция протекает в зоне соприкосновения горючего с окислителем, т.е. рассматривается диффузионное горение.

Функция \overline{C} на срезе сопла равна 1, а в зоне воздуха 0.

Для данной постановки, системы уравнений (1) - (9) или (1) - (8), (10) - (12) можно решать с помощью следующих безразмерных краевых условий:

I. x = 0:

1)
$$0 \le y \le 1, \ 0 \le z \le 1; \ u = 1, \ v = 0, \ w = 0, \ H = H_2, \ P = P_2, \ \overline{C} = 1, \ (k = k_2, \ \varepsilon = \varepsilon_2).$$

2)
$$1 < y < y_{+\infty}, 1 < z < z_{+\infty}; u = u_1, v = 0, w = 0, H = H_1, P = P_1, \overline{C} = 1, (k = k_1, \varepsilon = \varepsilon_1).$$

II. x > 0:

$$z = 0; 0 \le y < y_{+\infty}; \quad w = 0, \quad \frac{\partial f}{\partial z} = 0,$$

$$(f = u, v, H, C, (k, \varepsilon)).$$
(13)

2)
$$y = 0$$
; $0 \le z < z_{+\infty}$; $v = 0$, $\frac{\partial f}{\partial y} = 0$, $\left(f = u, w, H, \overline{C}, (k, \varepsilon) \right)$.

3)
$$z \to z_{+\infty}$$
, $y \to y_{+\infty}$, $u = u_1$, $v = 0$, $w = 0$, $H = H_1$, $P = P_1$, $\overline{C} = 0$, $(k = k_1, \varepsilon = \varepsilon_1)$.

Здесь нижними индексами "1", "2" и " $+\infty$ " отмечены, соответственно, безразмерные величины окислителя и горючего на струе, а также в бесконечности.

Система уравнений (1) - (9) частично параболизована, поэтому их эллиптические эффекты проявляются через поле давления и их эллиптические свойства, связанные с полем движения, сохраняются [2, 3]. При истечении дозвуковой свободной струи через сопло прямоугольного сечения в среду, градиентом давления в продольном направлении и малыми изменениями его в поперечной плоскости можно пренебречь, что иногда даёт возможность проведения расчетов, заданных давлением [1-3].

Метод решения и результаты вычислительных экспериментов. Для численного интегрирования системы уравнений с краевыми условиями (13) используем пространственную двухслойную десятиточечную конечно-разностную схему переменных направлений [6] с точностью до порядка $O(\Delta x, \Delta y^2, \Delta z^2)$.

Большинство решений трехмерных параболизованных уравнений, получено согласно методу с сегрегированием, предложенного в процедуре SIMPLE [2], и в несколько отличной формулировке, которая также приводит к уравнению Пуассона для обновления давления [1].

В данной работе приводится эффективный метод, подобный SIMPLE с прямым методом решается уравнение Пуассона для определения поправки к скоростям. Якобы лишнее уравнение неразрывности используется для расчета дисбаланса массы. В отличие от работ [2, 3] поправки приводятся по трем составляющим скоростям; найденные решения u, v, w в новой итерации выражаются как расчетные (u_p, v_p, w_p) и плюс поправочные (u_c, v_c, w_c) в виде

$$u = u_p + u_c, \qquad v = v_p + v_c, \qquad w = w_p + w_c.$$
 (14)

Поправочные скорости определяются из уравнения неразрывности введением потенциала Q,

$$\rho u_c = \frac{\partial Q}{\partial x}, \qquad \rho v_c = \frac{\partial Q}{L \partial y}, \qquad \rho w_c = \frac{\partial Q}{\partial z}, \tag{15}$$

который является решением уравнения Пуассона

$$\frac{\partial^2 Q}{\partial x^2} + \frac{\partial^2 Q}{L \partial y^2} + \frac{\partial^2 Q}{\partial z^2} = Q_p, \tag{16}$$

где Q_p — источниковый член.

Разностное уравнение (16) можно записать для потенциала Q в каждой точке сетки поперек потока в плоскости по i (нумерация i-сечений по оси Ox, j — по Oy, k — по Oz) и использовать трехдиагональную систему уравнений при следующих обоснованных допущениях:

- 1) $Q_{i-1,j,k}=0$, $Q_{i,j,k-1}=0$ означает, что поправки к скорости в плоскости (i-1) и в сечении (k-1), в котором выполняется сохранение массы, уже получены.
- 2) $Q_{i+1,j,k}=0$, $Q_{i,j,k+1}=0$ означает, что поправки к скорости будут равны нулю, как и в плоскости (i+1), так и в сечении (k+1). Тем самым достигается их сходимость в этой плоскости и в сечении соответственно.

Наращивание расчетной области (расширение границы струи) по оси Oz и Oy проводилось по условию:

$$\max_{i,j,k} \left| F_{ijk} - F_{BH} \right| > \delta$$
 , где $F = \{u, H\}$, а δ — малое число.

Если это условие выполняется, то количество расчетных точек увеличивается на одну точку.

При неизобарическом случае, кроме соотношения (14) предположим, что истинное давление выражается как расчетное P_p и плюс поправочное, т.е. в виде

$$P = P_p + \beta P_c, \tag{17}$$

где β – коэффициент релаксации.

Далее предлагаемый метод имеет в своей основе, подобно как и в оригинальном подходе Патанкара и Сполдинга [2, 3], что поправки к скорости определяются поправками к давлению в соответствии с очень приближенным уравнением движения, но мы используем их по всем уравнениям движения, в которых продольные конвективные члены уравновешены членами с давлением. Дискретизируя левые части этих уравнений с учетом предположения, что в плоскости (i-1) поправки к скорости равны 0, получим

$$u_c = -\frac{\Delta x}{\rho u} \frac{\partial P_c}{\partial x}, \qquad v_c = -\frac{\Delta x}{L\rho u} \frac{\partial P_c}{\partial y}, \qquad w_c = -\frac{\Delta x}{\rho u} \frac{\partial P_c}{\partial z}.$$
 (18)

Учитывая, что поправленные скорости (14) должны удовлетворять уравнению неразрывности, получим уравнение Пуассона относительно P_c , и его можно легко решать в каждом сечении, если ввести некоторые обоснованные предположения подобные 1) и 2). В этом случае алгоритм расчета подобен вышеописанному, лишь с той разницей что после нахождения P_c вычисляются истинное значение давления и поправочные скорости по формулам (14).

Из профилей кинематического коэффициента турбулентной вязкости, приведенных в разных сечениях струи по осям OY и OZ (рис. 1), видно, что максимальное его значение наблюдается во фронте пламени, где температура имеет максимум, и это, в свою очередь, приводит к его возрастанию. $\mu_{\lambda}=0,\ \alpha=0$, где существует ядро струи, значение кинематического коэффициента вязкости равно нулю, а с удалением от среза сопла максимальное значение его перемещается к оси струи и изменение вдоль осей OY и OZ постепенно сглаживается.

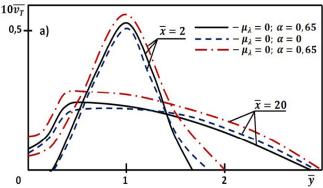


Рис. 1, a. Изменение кинематической вязкости при разных алгебраических моделях коэффициента турбулентности по оси y

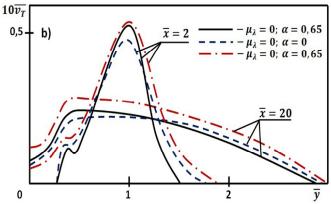


Рис. 1, b. Изменение кинематической вязкости при разных алгебраических моделях коэффициента турбулентности по оси z

Возрастание температуры топлива от 700 K до 1200 K приводит к увеличению длины диффузионного факела от $L_{\Phi}/2b=24$ до 26,5 при температуре окислителя 300 K, и более нагретом окислителе ($T_1=500$ K, $T_2=1200$ K) безразмерная длина факела доходит до 27,5.

На рис. 2 изображены осевое изменение продольной скорости и потока импульса вдоль оси затопленного диффузионного факела при

разных исходных значениях температуры горючей струи и окислителя (___ . __ - T_2 = 700 K; ___ _ - T_2 = 900 K; ___ _ - T_2 = 1200 K; ___ _ - T_2 = 1200 K; ___ _ - T_2 = 1200 K, T_1 = 500 K). Судя по осевому изменению этих параметров можно сказать, что их поведение правильно отражает физику явления, т.е. увеличение исходного значения температуры приводит к медленному убыванию осевой скорости потока импульса. При небольших температурах горючей струи ($T_2 \le 900$ K) на фронте пламени температура не превышает 1750 K.

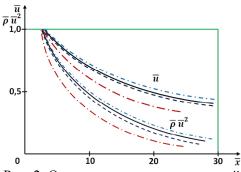


Рис. 2. Осевое изменение продольной скорости и потока импульса.

— . — - T_2 =700 K; — — - T_2 =900 K;

— - T_2 =1200 K; — - T_2 =500 K

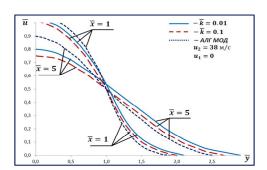


Рис. 3. Сравнение результатов в рамках алгебраической и "k– ϵ " модели турбулентности

На рис. 3 приведены сравнения профилей продольной скорости по оси OY в разных сечениях в продольном направлении, в рамках алгебраической и "k– ϵ " модели турбулентности. Незначительно отличающиеся результаты были получены при начальных значениях кинетической энергии турбулентности, составляющей 1% от исходной скорости модифицированных эмпирических констант "k– ϵ " модели турбулентности $C_1 = 1,3$ и $C_2 = 1,5$ вместо $C_1 = 1,4$ и $C_2 = 1,92$.

Выводы. На основе разработанного метода, исследовано влияние соотношения температуры горючей струи и окислителя, а также градиента давления на конфигурацию диффузионного факела. Достоверность полученных результатов обосновывается сравнением с экспериментальными работами других авторов.

Список литературы:

- **1**. *Оран Э*. Численное моделирование реагирующих потоков / Э. *Оран, Дж. Борис.* М.: Мир, 1990. 660 с.
- **2.** *Патанкар С.В.* Тепло- и массообмен в пограничных слоях / *С.В. Патанкар, Л.Б. Сполдинг.* М.: Энергия, 1971. 127 с.
- **3**. Андерсон Д. Вычислительная гидромеханика и теплообмен. В 2-х томах / Д. Андерсон, Дж. Таннехилл, Р. Плетчер. М.: Мир, 1990. 384 с.

- 4. *Ходжиев С.* Исследование трехмерных турбулентных струй реагирующих газов, истекающих в спутном (затопленном) потоке в воздухе при диффузном горении / *С. Ходжиев* // Узб. Журнал. Проблемы механики. Ташкент, Фан. 1993. № 2. С. 28-33.
- 5. *Сфорца С.* Исследование трехмерных вязких струй / *Стейгер Сфорца, Л. Трентакосте* // Ракетная техника и космонавтика. − 1966. № 5. С. 42-50.
- 6. Ларюшкин М.А. Некоторые закономерности виляния начального уровня турбулентности на развитие прямоугольной струи / М.А. Ларюшкин. Тр. Московского энергетического института. 1981. № 524. С. 26-30.
- 7. *Кузов К.* Аэродинамика струй, истекающих из прямоугольных сопел / *К. Кузов* // Промышленная теплотехника. 1990. Т. 12. № 4. С. 38-44.
- **8**. *Nikjoo M*. Calculation of turbulent three-dimensional jet-induced flow in rectangular epclosures / *M. Nikjoo, K.C. Karki, H.C. Mongia* // AIAA pap-1990, n 0684-pl-10. РФЖ. 1991. № 1. С. 144
- 9. $\it Maк-Гирк$ Дж. Дж. Расчёт трёхмерных турбулентных свободный струй / Дж. Дж. $\it Maк-Гирк$, В. $\it Podu$ // Турбулентные сдвиговые течения. М.: Машиностроение, $\it 1982.-T.1.-\it 288$ с.
- **10**. *Агулыков А*. Исследование структуры трехмерных турбулентных струй / *А. Агулыков, К.Е. Джаугаштин, Л. Ярин* // Изд. АН СССР. МЖГ. 1975. № 6. С. 13-21.
- **11**. *Лапин Ю.В*. Внутренние течение газовых смесей / *Ю.В*. *Лапин*, *М.Х*. *Стрелец*. М.: Наука, 1989. 368 с.
- **12**. Вулис Л.А. Аэродинамика фалека / Л.А. Вулис, Л.П. Ярин. Л: Энергия, 1978. 216 с.
- 13. *Туник Ю.В.* Журнал. Механика жидкости и газа. "Численное моделирование детонационного горения водородовоздущных смесей в сопле Лаваля". Московский государственный университет им. М.В. Ломоносова, Научно-исследовательский институт механики. -2010.- N = 2.- C. 107-114.
- **14.** *Khudayarov B.A.* Numerical Study of the Dependence of the Critical Flutter Velocity and Time of a Plate on Rheological Parameters / *B.A. Khudayarov* // International Applied Mechanics 2008. Vol. 44. N_2 6. P. 676-682.
- **15**. *Khudayarov B.A*. Numerical Analysis of Nonlinear Flutter of Viscoelastic Plates. International Applied Mechanics / *B.A. Khudayarov*. -2005. Vol. 41. № 5. P. 538-542.
- **16.** *Khudayarov B.A.* Flutter of Viscoelastic Plate in a Supersonic Gas Flow / *Khudayarov B.A.* // International Applied Mechanics. -2010. Vol. 46. No. 4. P. 455-460.
- **17.** *Khudayarov B.A.* Mathematical Simulation of nonlinear oscillations of viscoelastic pipelines conveying fluid / *B.A. Khudayarov, F.Zh. Turaev* // Applied Mathematical Modeling. 2019. Vol. 66. P. 662-679.
- **18.** *Khudayarov B.A.* Nonlinear supersonic for the viscoelastic orthotropic cylindrical shells in supersonic flow / *B.A. Khudayarov, F.Zh. Turaev* // Aerospse Science and technology. 2019. Vol. 84. P. 120-130.

References:

- **1.** Oran, E., and Boris, J. (1990), *Numerical modeling of reacting flows: Trans. From English*, Moskow, Mir. 660 p.
- **2.** Patankar, S.V., and Spolding, D.B. (1967), *Heat transfer and heat transfer in boundary layers*, Moskow, Energy, 127 p.
- **3**. Anderson, D., Tannehill, J., and Pletcher, R. (1990), *Computational fluid mechanics and heat transfer*, In. 2-Vol., Moskow, World, Vol. 2, 384 p.

- 4. Khodzhiev, S. (1993), "Investigation of three-dimensional turbulent jets of reacting gases flowing in a tandem (submerged) stream in air with diffuse combustion", *Uzb. Magazine*. *Problems of mechanics*, Toshkent, Fan, No. 2., pp. 28-33.
- **5**. Sforza, Steiger, and Trentakoste L. (1966), "Study of three-dimensional viscous jets", *Rocket technology and cosmonautics*, No. 5, pp. 42-50.
- **6**. Larushkin, M.A. (1981), "Some patterns of the wagging of the initial level of turbulence on the development of a rectangular jet", *Works of Moscow Power Engineering Institute*, No. 524, pp. 26-30.
- 7 Kuzov, K. (1990), "Aerodynamics of jets flowing from rectangular nozzles", *Industrial Heat Engineering*, Vol. 12, No. 4, pp. 38-44.
- **8**. *Nikjoo*, *M.*, *Karki K.C.*, *and Mongia*, *N.S.* (1991), "Calculation of turbulent three-dimensional jet-induced flow in rectangular epclosures", AIAA pap-1990, n 0684-pl-10. RFZh, No. 1, P. 144.
- **9**. Mak-Guirk, J.J., and Rodi, V. (1982), Calculation of three-dimensional turbulent free jets, Turbulent Shear Flows, Moskow, Mechanical Engineering, Vol. 1, 288 p.
- **10**. Agulykov, A., Dzhaugashtin, K.E, and Yarin, L. (1975), "Investigation of the structure of three-dimensional turbulent jets", Edition of the USSR Academy of Sciences-MJK, No. 6, pp. 13-21.
- 11. Lapin, Yu.V., and Strelets, M.Kh. (1989), Internal flow of gas mixtures, Moskow, Science, 368 p.
- 12. Vulis, L.A., and Yarin, L.P. (1978), Aerodynamics of a faleka, Leningrad, Energy, 216 p.
- **13**. Yu. V. Tunik. (2010), "Numerical simulation of detonation combustion of hydrogen-air mixtures in a Laval nozzle". Magazine Fluid and gas mechanics. Moscow State University. M.V. Lomonosov, Research Institute of Mechanics, No. 2, pp. 107-114.
- **14**. *Khudayarov*, *B.A.* (2008), "Numerical Study of the Dependence of the Critical Flutter Velocity and Time of a Plate on Rheological Parameters", *International Applied Mechanics*, Vol. 44, No. 6, pp. 676-682.
- **15**. *Khudayarov*, *B.A.* (2005), "Numerical Analysis of Nonlinear Flutter of Viscoelastic Plates", *International Applied Mechanics*, Vol. 41, No. 5, pp. 538-542.
- **16**. *Khudayarov*, *B.A.* (2010), "Flutter of Viscoelastic Plate in a Supersonic Gas Flow", *International Applied Mechanics*, Vol. 46, No. 4, pp. 455-460.
- 17. Khudayarov, B.A., and Turaev, F.Zh. (2019), "Mathematical Simulation of nonlinear oscillations of viscoelastic pipelines conveying fluid", Applied Mathematical Modeling, Vol. 66, pp. 662-679.
- **18**. *Khudayarov*, *B.A.*, *and Turaev*, *F.Zh*. (2019), "Nonlinear supersonic for the viscoelastic orthotropic cylindrical shells in supersonic flow", *Aerospse Science and technology*, Vol. 84, pp. 120-130.

Статью представил доктор тех. наук, проф., зав. кафедры "Высшая математика" Ташкентского института инженеров ирригации и механизации сельского хозяйства Б.А. Худаяров.

Надійшла (received) 11.10.2018

Atamirzaev Makhmudjan, PhD

Tashkent institute of Irrigation and Agricultural Mechanization Engineers Higher mathematics,

Str. Kari Niyaziy, 39, Tashkent, Uzbekistan, 100000,

Tel: +99897 723-10-55, email: otamax99@mail.ru

ORCID ID:0000-0002-4542-1228

Yuldashev Nurilla, PhD

Tashkent institute of Irrigation and Agricultural Mechanization Engineers Higher mathematics,

Str. Kari Niyaziy, 39, Tashkent, Uzbekistan, 100000,

Tel: +998911658674, email:

ORCID ID: 0000-0002-4542-1229

УДК.591.6

Чисельне моделювання тривимірних турбулентних струменів реагуючих газів / Атамірзаєв М., Юлдашев Н. // Вісник НТУ "ХПІ". Серія: Інформатика та моделювання. — Харків: НТУ "ХПІ". — 2019. — № 13 (1338). — С. 13-24.

У даній роботі наводяться модифіковані моделі для обчислення турбулентної ефективної в'язкості, метод розрахунку та деякі чисельні результати дослідження тривимірних турбулентних струменів газів, що стікають з сопла прямокутної форми і поширюються в затопленому (спутному) потоці повітря при дифузійному горінні. Іл.: 4. Бібліогр.: 18 назв.

Ключові слова: турбулентні потоки; в'язкість; сопло; газів, що реагують, ефективна в'язкість.

УДК.591.6

Численное моделирование трехмерных турбулентных струй реагирующих газов / Атамирзаев М., Юлдашев Н. // Вестник НТУ "ХПИ". Серия: Информатика и моделирование. — Харьков: НТУ "ХПИ". — 2019. — № 13 (1338). — С. 13 — 24.

В данной работе приводятся модифицированные модели для вычисления турбулентной эффективной вязкости, метод расчета и некоторые численные результаты исследования трехмерных турбулентных струй реагирующих газов, истекающих из сопла прямоугольной формы и распространяющихся в затопленном (спутном) потоке воздуха при диффузионном горении. Ил.: 4. Библиогр.: 18 назв.

Ключевые слова: турбулентные струи; вязкость; сопло; реагирующие газы; эффективная вязкость.

UDC.591.6

Numerical simulation of three-dimensional turbulent jets of reacting gases / Atamirzaev M., Yuldashev N. // Herald of the National Technical University "KhPI". Series of "Informatics and Modeling". – Kharkov: NTU "KhPI". – 2019. – $Nolemath{\mathbb{N}}$. 13 (1338). – P. 13 – 24.

This paper presents modified models for calculating turbulent effective viscosity, a calculation method and some numerical results of a study of three-dimensional turbulent jets of reacting gases flowing from a rectangular nozzle and propagating in a submerged (co-current) air flow during diffusion combustion. Figs.: 4. Refs.: 18 titles.

Keywords: turbulent jets; viscosity; nozzle; reacting gases; effective viscosity.