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IDENTIFICATION OF THE COEFFICIENT IN THE DIFFUSION
MODEL OF HYDRODYNAMIC FLOW IN A CHEMICAL
REACTOR

A chemical technological process taking place in a chemical reactor with a second-order
chemical reaction is considered. A one-parameter diffusion model for nonstationary flows is
proposed for the mathematical description of the hydrodynamic flow in the reactor. Within the
framework of the proposed model, the task is set to identify the longitudinal mixing coefficient
according to an additionally specified condition regarding the concentration of the reagent under
study at the outlet of the reactor.

A special representation is proposed for the diffusion terms in the hydrodynamic flow
model in the reactor. The method of difference approximation is used to construct a discrete
analogue of this model using explicit-implicit time approximation for diffusion terms.
Decomposition is used to numerically solve the resulting system of linear difference equations,
as a result of which the system of difference equations for each discrete value of a time variable
splits into two mutually independent linear subsystems, each of which can be solved
independently, independently of each other. As a result, an explicit formula was obtained for
determining the approximate value of the longitudinal mixing coefficient in a hydrodynamic
flow. Based on the proposed computational algorithm, numerical calculations were performed
for model problems.

Keywords: diffusion model; longitudinal mixing coefficient; coefficient inverse
problem; explicit-implicit approximation; difference problem.

IlocTranoBka npodsemu. It is known that interconnected hydrodynamic,
thermal and diffusion processes are carried out in chemical reactors, which
create conditions for the chemical transformation of a substance. A large number
of different types and designs of chemical reactors are used in chemical
technology, which are classified according to a number of characteristics [1, 2].
The most common classification of chemical reactors is based on the
hydrodynamic mode of motion of the reaction medium in reactors.
Hydrodynamic models of ideal mixing; ideal displacement; diffusion models;
cellular models; combined models are used to describe flows of different nature
in chemical reactors [3 — 6]. For mathematical description, most of the real
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hydrodynamic flows in chemical reactors mainly use one-parameter and two-
parameter diffusion models. According to the one-parameter diffusion model,
the mixing of reagents in reactors occurs only in the longitudinal direction. And
according to the two-parameter diffusion model, longitudinal and radial mixing
of reagents occurs simultaneously in the hydrodynamic flow. Diffusion models
accurately reflect the structure of hydrodynamic flows in many real reactors:
film, spray, bubbling columns, extractors, etc. [6].

When modeling the processes occurring in chemical reactors, it is
considered a very important step to provide the appropriate mathematical
models with the necessary quantitative information, i.e. identification of the
parameters of mathematical models. Usually, the parameters of a mathematical
model quantitatively and unambiguously describe certain characteristics of a
chemical technological process. The determination of the parameters of
mathematical models is a defining moment, on which the adequacy of the
constructed mathematical model and the effectiveness of controlling the
chemical technological process using the constructed model largely depend. It
should be noted that the parameters of all mathematical models of chemical and
technological processes are mainly determined on the basis of experimental
studies, which are associated with certain difficulties. In this regard, there is a
need to identify the parameters of mathematical models of chemical and
technological processes based on computational experiments. In this paper, to
identify the longitudinal mixing coefficient, a numerical method is proposed
based on solving the inverse problem for a one-parameter diffusion model of
hydrodynamic flow in a chemical reactor during a second-order reaction.

Problem Statement and Solution Method.

Suppose that a chemical reactor, which is a tubular apparatus,
continuously receives a reaction stream. The incoming stream moves only in
one direction along the length of the reactor and at the same time a second-order
chemical reaction takes place with the participation of the reagent under study
in the stream. It is assumed that the change in the concentration of the reagent
under study in the reactor occurs due to its transfer by the reaction medium
(convective transfer) in the direction coinciding with the direction of the general
flow and as a result of its transfer by diffusion (diffusion transfer). In the reactor,
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only longitudinal mixing of the reagent under study in the reaction mixture takes
place and the values of the parameters of the reaction mixture along the reactor
cross section are the same. The reactor operates in an isothermal mode and, in
accordance with the laws of the chemical reaction, a certain distribution of
concentrations of reagents involved in the reaction is established along the
length of the reactor. To describe the process occurring in this chemical reactor,
we use a one-dimensional, one-parameter diffusion model of the hydrodynamic
flow of the reaction medium, taking into account the course of a second-order
chemical reaction

2
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3

O<x<l, 0<t<T, (1)

where w(X,t) is the concentration of the reagent under study, V(t) is the rate of

reaction flow in the reactor, d is the coefficient of longitudinal mixing, k is the
rate constant of the chemical reaction, | is the length of the chemical reactor, x
is the coordinate along which the reaction flow moves, t is time.

Suppose that at the initial moment of time t =0 the distribution of the
reagent concentration along the length of the reactor is known, i.e. for equation
(1) we have the following initial condition

w(x,0) =¢(x). )

The boundary conditions at the inlet X =0 and outlet X=1 of the reactor
are formulated on the basis of the Dankverts condition, according to which the
sum of the flows of matter approaching the reactor boundary at the ends of the
apparatus should be equal to the flow of matter departing from the boundary [4,
6]. As a result, we will have

v(t)i(t)+d%=v(t)w(o,t>, 3)
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where &(t) is the concentration of the reagent under study in the incoming
stream. Obviously, if you set the functions V(t), &(t), #(X) and values of the
constant parameters d, K, then by solving the problem (1) — (4), you can find
the function w(X,t), i.e. the distribution of the reagent concentration along the
length of the reactor.

Now let's assume that along with the unknown function /(Xt), the
longitudinal mixing coefficient d is also unknown and identification of this
parameter of the diffusion model is required. For this purpose, an additional

condition is set regarding the concentration of the reagent under study at the
outlet of the reactor

(I, =1(). (5)

Thus, the task is to determine the function w(X,t) and coefficient d
satisfying equation (1) and conditions (2) — (5). The task (1) — (4) belongs to the
class of coefficient inverse problems of mathematical physics [7 — 10]. It should
be noted that the correctness of the formulation of coefficient inverse problems,
the issues of the existence and uniqueness of their solution in various functional
classes are studied in [10-14]. Numerical methods for solving problems of
identifying coefficients for parabolic equations are considered in many papers
[15-19].

Suppose that the coefficient inverse problem of determining the pair
(w(x,1), d) from equation (1) and conditions (2)—(5) is uniquely solvable.

Let's proceed to the construction of a discrete analog of the problem (1) —
(5). To do this, we introduce a uniform space-time difference grid in a
rectangular area {O <x<lI, 0<t< T}

o={(x.t;):% =iAx, t, = jAt, i=0,1,2,..,n, j=0,12,...,m},
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where Ax = ! is the step of the difference grid in the variable X, At = T is the
n m

step of the difference grid in time t. First, the diffusion terms d l’g(x Y
X

d % in equation (1) and boundary condition (3) are represented as

g SV g () g 0y (x

ox? x> x?
d oy (0,1) _d, oy (0,t) +d, oy (0,1) ’
OX OX OX

where d =dg +d;, dy >0 is a given value and d; is an unknown value.

Using the method of difference approximation, we construct a discrete
analogue of the problem (1) — (5) on a grid a_), using an explicit— implicit time
approximation for the above-presented diffusion terms

iy, 01 S | )
Vi A:://l +v] Vi Al/jl_l +k(l//ijil)2 —

. . s (6)
_g, VAl g i -2
0 AX? AX?
i=12...n-1,
o iy, -1 _ -1 o
VJ§J+dO‘//1AX'//o+d1‘//1 AX‘//O :VJ‘//d, 7)
‘//nj—‘//j 1
" 1= =0, (8)
pl=f1, )
j=12,...,m,
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wl=¢, i=02..n, (10)

where vl =y (1), d=¢0), Fl=1@) &=ct), v =v().
As can be seen, the discrete analogue of the problem (1) — (5) for each
fixed value J, j=1,.2...,m isasystem of linear algebraic equations in which

the magnitude d; and approximate values of the desired function ¥(X,t) in the

nodes of the difference grid @ act as unknowns , 1.e. l//ij, i=0,12,...,n-1,
j=123 ..,m.

To solve the resulting system of difference equations (6) — (10), we use
the idea of decomposing this system into mutually independent subsystems,
each of which can be solved independently, independently of each other [9, 17].
For this purpose, the solution of the system of equations (6) — (10) for each
fixed value =1, 2,....,m is represented as

wil =ul +dwl, i=0,12,..,n, (11)

where ui’, WiJ are also unknown variables. Substituting the ratio (11) into

equation (6), we will have

j j -1 i i i i
U’ +dw —y; Lyl u; +dw —ul, —dwey

+k(yl™h)? =
A ~ (vi™)
—d ul, +dwl, —2u! -2dw! +ul, +dw, +
-0 AX?
i1 i1 ja
v, Vi — 2y +yily

AX?

] j-1 ud i ) i _od i
Ui =y iUt k(l//ij_l)z —d, Ui 2U|2 Uisg
At AX AX
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j wd —w i _ogwd j i1 o j-1 j-1
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At AX 0 AX AX2 } (12)

And the substitution expression g//ij in (7), (8)

iyl il gty
vieh+dy—L vyl [+dy dyg—2t—2+ 0 _viwd [=0,313
{ ¢ +lo=r 0|0 o x 0 (13)
1—nlig ———nl_g. (14)
AX AX

Obviously, the relations (12) — (14) will be executed automatically for
each fixed value j, j=1,2,...,m,if:

the variables uij , 1=0,12,..,n satisfy the system of difference equations

- [ Y R - J J—u)
{7 A E e SRR
AL AX AX?
vIgh+dp—=——2-vluj =0, (16)
Ug — gy
ul-uly o 17
_ (17)

and the variables Wij , 1=0,1,2,..,n satisfy the following system of difference

i wd —wd I _owl i 1 _ o -1 -1
Wi i W Wi—1_dOWi+1 W AW Wil — 2y iy
2 2
AX AX

=0,(18
At AX (18)

j j j-1 j-1
Wy — W, —
dg 1 o+‘//1 Yo

—viwd =0, 19
AX AX 0 (19)
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wi —wl
———nl-0. (20)
AX

The obtained independent systems of difference equations (15) — (17) and
(18)—~(20) for each fixed value j, j=1,2,...,m are a system of linear

algebraic equations with a tridiagonal matrix, the solutions of which are
determined by the well-known Thomas method [9].
Substituting representation (11) into (9), we will have

ul +dw! =f7

From here we get a formula for determining the approximate value of an

unknown quantity 0y

fl-u]
d1: A .
wl

And to calculate the approximate value of the desired longitudinal mixing
coefficient d, we will have

fl_yl
d:do+d1:d0+ T n. (21)
W

Thus, the computational algorithm for solving the system of difference

equations (6)—(10) by definition l//ij ,1=0,12,..,n,and d, ateach time layer
I, J=12,...,m, consists of the following stages:

1) the solutions of two independent systems of difference equations (15)
—(17) and (18) — (20) with respect to auxiliary variables are determined uij , Wij
, 1=0,12,..,n;

2) The approximate value of the desired longitudinal mixing coefficient
d is determined by the formula (21) ;
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3) The values of the variables l//ij , 1=0,12,..,n are calculated using the

formula (11).

In order to test the effectiveness of the proposed computational algorithm,
numerical experiments were conducted for model problems. The numerical
experiments were carried out according to the following scheme:

I. For a given value of the longitudinal mixing coefficient d , the solution
of the direct problem (1) — (4), i.e. the function y(r,t), 0<x<I, 0<t<T,

is determined ;
II. The dependence f(t)=w(l,t) is taken as the exact input data for

solving the inverse problem of d recovery.

The results of numerical experiments show that the proposed
computational algorithm can be applied in the study of hydrodynamic flows in
chemical reactors.

Conclusion.

The problem of identification of the longitudinal mixing coefficient in a
one-parameter diffusion model of hydrodynamic flow in a chemical reactor is
considered. When constructing a discrete analogue of the nonlinear problem
under consideration, an explicit-implicit approximation in time is used for the
diffusion terms. This makes it possible to reduce a nonlinear problem to solving
a system of linear difference equations. And the proposed decomposition of the
resulting system allows us to find the coefficient of longitudinal mixing using
an explicit formula. The proposed method can also be used to identify the
parameters of a two-parameter diffusion model of a hydrodynamic flow.
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InenTudikanis xoedimienra mudysiinoi Monxesai rigpoamHamMiyHOro NOTOKY B
ximiunomy peakrtopi / Xammap MexBaiu oray I[am3zaes, Hyma6a Xaoiaap rusu
Baiipamosa // Bicauk HTY "XIII". Cepist: Inpopmaruka Ta MomemoBanus. — Xapkis: HTY
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PosrnsmaeTsest XiMIKO-TEXHOJIOTIYHIH MPOIIEC, IO MPOTIKAE y XIMIYHOMY peaxTopi, 3
XIMIYHOIO peaKIi€ro IPyroro nopsiaky. st MaTeMaTHYHOTO OMHUCY TiIPOJIUHAMIYHOTO TIOTOKY
B p€aKTopi MPOMOHY€EThCS OJHONAapaMeTpuuHa qudy3iiiHa MoJiesb HecTalliloHapHUX MOTOKIB. B
paMKax 3ampollOHOBAaHOI MOZENI TMOCTAaBJICHO 3aBAaHHs igeHTH(dikamii KoedimieHTa
MO3JIOBXKHBOTO  MEpEeMIilllyBaHHS ~ JOJATKOBO 3aJlaHOK0 YMOBOIO IIOJO KOHLEHTpAIil
JIOCITIZPKYBAHOTO pearcHTy Ha BUXO/Ii 3 peakropa.

[TpononyeThes crenianbHe moganHs st Tudy3iHHUX WieHIB MO/IENI I'IpOIUHAMIYHOTO
HOTOKY B peakTopi. MeToaoM pi3HHLEBOT anpoKCUMAllii OyAy€eThCs JUCKPETHUH aHAIOT JaHOT
MOJIeJTi 3 BUKOPUCTaHHSM SBHO-HESBHOT allpOKCHMAaLii 38 YacoM Uit AuQy3iiiHuX wieHiB. s
YHCEJBHOTO DILICHHS OTPUMAHOI CHUCTEMH JIHIMHUX DPI3HULEBHX DPIiBHSIHB 3aCTOCOBYETHCS
JCKOMIO3MLISA, Y Pe3yJbTaTi CHCTEMa pPI3HULEBHX PIiBHAHBb NPU KOXHOMY IHCKPETHOMY
3HAYCHHI THMYacOBOi 3MIHHOI PO3IMAJaeThcsA JBi B3a€MHO HE3AIEXKHI JIHIWHI IMiICHCTEMH,
KOKHA 3 SIKUX MOJKE BHPILIYBaTHCSI CaMOCTIHHO, HE3aJe)KHO JIpyr Bin npyra. B pesynbrari
oTpuMaHa siBHa (hopMyIia AJisi BU3HAUEHHS HAOJIMKEHOT0 3HaueHHs Koe(illieHTa [03/I0BXHbOTO
nepeMilryBaHHs TipoJHaMivHOMY MOTOLi. Ha OCHOBI 3amponoHOBaHOr0 OOYUCIIOBAIBHOTO
ITOPUTMY OYyJIO MPOBEJCHO YKCENIbHI PO3PAXYHKH JJIsI MOJCIBHHUX 3aBaaHb. bibmiorp.: 19
Has3B.

KoarouoBi cioBa: audysiiiHa MoJenb; KOedillieHT M030BXKHBOTO IEpeMilllyBaHHS;
KoeilieHTHEe 3BOPOTHE 3aBIAaHHS,; SBHO-HESIBHA alIPOKCUMAIlisl; PI3HALICBE 3aBIAHHS.
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Identification of the coefficient in the diffusion model of hydrodynamic flow in a
chemical reactor / Kh. M. Gamzaev, N. Kh. Bayramova // Herald of the National Technical
University "KhPI". Series of "Informatics and Modeling". — Kharkov: NTU "KhPI". — 2024. —
Nel-2(11-12).—P.15-26.

This article analyzes in detail the actual problem of the spread of disinformation through
various media resources and their impact on society. The main aspects of information
consumption by Ukrainian society, in particular on the Internet, are highlighted, and the
potential target audience is determined. Based on the analysis, a new intelligent system based
on Natural Language Processing technology is proposed, which provides users with a
comprehensive overview of the activity of each media resource. Available analogues with their
advantages and limitations are examined in detail, emphasizing the significant advantages of
the proposed intelligent system for increasing information literacy and countering
disinformation. Refs.: 19 titles.

Keywords: diffusion model; longitudinal mixing coefficient; coefficient inverse
problem; explicit-implicit approximation; difference problem.
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