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The paper focuses issues of tensor calculus study in technical universities. To promote 
a holistic insight on tensors by undergraduates, there proposed a cognitive tensor model of a 
physical system on the base of hierarchical John Von Neumann classes. Refs.: 23 titles. 
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1. Introduction. The problem statement. System tensor modeling 
plays an important role in various fields of theoretical science and applied 
researches. The concept of tensor goes back to Riemann's ideas of non-
Euclidean geometry on curved smooth surfaces presented in 1854 [1]. Tensor 
calculus itself was introduced by Ricci-Curbastro (Italy) in 1887 primarily as 
extension of vectors [2], and further developed by his student Levi-Civita ([3], 
1899).  

The tensor method of Ricci-Curbastro/Levi-Civita latter found its 
application in general relativity theory (GRT) coauthored by A. Einstein and 
M. Grossman in 1913 [4]. In subsequent decades, tensor analysis penetrated 
other areas, and now included in advanced academic courses at technical 
universities and engineering high schools [5 – 12]. Students often seem aware 
of tensor’s importance, though, unless engaged in a dedicated course, tensor 
remains covered in a veil of mystery [10].  

An adequate insight of tensor by undergraduate students meets two 
major issues: firstly, the lack in a clear presentation of tensors tied to what 
students already know from other courses, such as vector algebra; secondly, 
the use of cumbersome tensor notation and construction rules for high rank 
tensors [10].  

In this work, typical approaches considered towards introduction the 
category of tensor in technical universities. Diverse alternative points of view 
in understanding tensors have been studied, as well as logical aspects of 
"tensor calculus architecture" cleared up. To our mind, a major challenge in  
tensors perception by undergraduates is a seamless transition from intuitively 
known "geometric vectors" to the core formalism of tensor calculus, i.e. to the 
first rank covariant and contravariant tensors which are basic terms in various 
high rank tensor forms. 

Tensor analysis is a truly novel holistic insight on our world which 
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extends far beyond traditional distinct academic disciplines like physics, 
geometry, algebra etc. To understand complex tensors in geometrical 
interpretation as abstract spatial forms (or spaces) with unusual properties, our 
theoretical and empirical knowledge must be crucially rethought.  

A cognitive point of view on matter is about to recognize that spatial 
structure of the world is not more than an individual model of a local physical 
environment which is perceived through human sensations and/or various 
instruments of observation. Thus, no "absolute space" exists, and none 
"objective coordinate" can be measured for "a point" or "vector" in either 
physical or geometrical orthonormal coordinate basis. 

For this reason, with respect to tensors, the notorious question arises 
again. What comes first – matter or consciousness? In other words, what is 
primarily predetermined in a formal theory (physical experiment or its 
geometrical model, vector as object or vector space, tensor as geometrical 
image or tensor as an abstract algebraic coordinate form)? Without convincing 
and consistent logical doctrine, most academic tutorials on tensor analysis run 
the risk of being incomprehensible to the target audience.  

Numerous attempts at constructive introduction to tensor analysis for 
students of technical universities, as well as obvious difficulties in 
understanding this discipline, once again reflected the known problem of 
axiomatic foundation of mathematics. This problem is usually associated with 
Cantor’s set theory (also known as "naïve" set theory) introduced by German 
mathematician Georg Cantor in 1879 – 1883 [13].  

The Cantor's set theory became a common axiomatic platform of classic 
functional analysis, and still, remains a fundamental universities course, 
though sharp discussions on this theory triggered since end of XIX century. 
Actually, the Cantor's "naive" set theory was designed as a "flat" (or single-
level) formal grammar, where all the terms blend into one layer framework 
without any hierarchical subordination. Because of this, the "naive" set theory 
is experiencing internal contradictions. Philosophers and mathematicians of 
19 – 20 centuries (Bertrand Russell, J. Von Neumann, Kurt Gödel, Paul 
Bernays, and others) discovered some logical problems caused due to the 
Cantor’s set theory.  

Bertrand Russell pointed at one of those problems in 1901 (aka 
"Russell’s paradox" or Russell's antinomy [14]. In simple words, the 
"Russell’s paradox" sounds as a rhetorical question ("is the set of all sets a 
subset of itself?") for which neither "yes" nor "no" are right answers. 

The same paradox was earlier discovered by E. Zermelo (1899), but not 
published. At the end of the 1890s G. Cantor himself realized the cognitive 
issues of his set theory [15].    
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The nature of mentioned above logical issues and paradoxes is that 
average human brain needs some explicit hierarchy of terms and notions for 
clear perception a complex logical construction. In fact, the underlying 
background of any serious formal theory should rely on statistics retrieved 
from empirical data.  

Therefore, the axiomatic foundation of a well-tailored theory is a 
particular delicate shell of empirical knowledge that accumulates and reflects 
previous experience. And if the axiomatic background of a theory is not 
enough clear and transparent  for target audience, then the whole building of 
abstract theory will inevitably fall apart, no matter how beautiful and strict 
there seemed the  theory itself. 

An outstanding result in radical rethinking the overall framework of 
math theory and its axiomatic basis for a physical system was exhibited by the 
greatest physicist and mathematician of the 20th century J. Von Neumann in 
his work on math foundation of quantum mechanics ([15], 1927). To design a 
consistent math model of quantum mechanics system, Neumann had to 
additionally create a fundamentally new set theory based on a multilevel class 
hierarchy (von Neumann classes) as an alternative to Cantor’s single-level set 
theory ([16], 1928).  

The essence of Neumann’s class theory is that various "sets" in the 
formal theory are divided into hierarchy classes, forming a multi-level logical 
scheme of concepts. New terms of theory are built as functions of 
subordinated argument-terms, and the rank of a new function-term is 
determined by the highest rank among the argument-terms. No recursive 
definitions of terms are admitted (such as "set of all sets" in Russell’s paradox 
mentioned above).  

By the middle of the 20th century, joint efforts of J. Von Neumann, 
K. Gödel and P. Bernays, resulted in a coherent axiomatic basis for the set 
theory (aka NGB axioms [17], 1954). Despite NGB axioms issued about 70 
years ago, many conventional courses on functional analysis are still based on 
the “naive” set theory of G. Cantor ([18 − 20]).  

The careful consideration of tensor methodology exhibited in university 
textbooks, indicates similar problems of cognitive nature, tied to non-classified 
"flat" categorization of different terms like "vector", "space", "tensor" etc. 
while introducing the terminology and formalisms of tensor calculus.  

On this premise, the axiomatic foundation of tensor analysis is not 
accomplished yet, and therefore, new researches in this realm needed.  

 

2. Related publications survey. Objectives. In this section, some 
common undergraduate tutorials on tensors issued in English within 2002 – 
2016, are discussed.  
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Reference 1. 
Consider the introduction to tensors for students of physics and 

engineering in NASA Glenn research center, Ohio ([5], 2002). Have a look at 
pages 4/8 and 5/9 of the text (where the first number "4" means the page 
number in content table, while the second number "8" means related page in 
"pdf" file). The given text claims the following:    

Page 4/8: 

 
 

Page 5/9: 

 
 

Our remarks on the file [5] are the following.  
1) Neither previously in the [5] nor in this text fragment of [5], the 

operations like ijii,  are defined. Suppose that unitary vector dyads ijii,   are 
scalar product multiplication, then must be: ),(cos,1 jiijii ϕ== , etc. Because 
of that, the dyad UV must result in a single number. 

2) The only formal definition in [5] for a tensor of rank n is brought 
above (scalar – 0 rank tensor, vector – 1 rank tensor, dyad – 2 rank tensor, 
triad – 3 rank tensor etc.). 

Reference 2. 
The advanced version of [5] is "Foundations of Tensor Analysis for 

Students of Physics and Engineering" ([6]), which was published by the 
NASA Glenn research center in 2005.  

Page 11/17 in [6] says:  
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Our remarks on the file [6] are the following.  
1) Here introduced 4 special types of "dyad multiplications" (or "dyad 

products"): "inner product", "cross product", "product of dyad and scalar", 
"direct product of two dyads". 

2) On the other hand, in mathematics also know very similar terms like 
"dot product", "scalar product", "inner product", "outer product of vectors", 
"vector product", "cross product", "dyad product", "scalar multiplication", 
"vector multiplication" etc. [21]. Such collection of similar terms seems to be 
over complicated and surplus for consistent definition the tensor entity. 

3) In the content table of [6] the first mention of tensor is:  
"Metric or Fundamental Tensor 24" I means, that "tensor" is not 

introduced formally as itself. 
Reference 3.  
"Tensors and their applications", Azad Inst. of technology (India), 2006 

[7]. The Preface of this file on page /10 says: A quantity having magnitude 
only is called "scalar" and a quantity with magnitude and direction both, called 
"vector". But certain quantities are associated with two or more directions; 
such a quantity is called "tensor".  

Next, page 6/23 of [7], section "Tensor algebra" says:  
 

 
 

Page 7/24 says:  
 



 
 
 
 
Вісник Національного технічного університету "ХПІ", 2018, № 42 (1318)  

ISSN 2079-0031 (Print)  ISSN 2411-0558 (Online) 
 

 87 

 
 

Similarly, covariant tensors of rank 1 are introduced in [7]. Our remark 
on the file [7] is: The two coordinate systems are used (X and Y) which are not 
explicitly bound herewith in declarations. 

Reference 4.  
"Introduction to vectors and tensors", Houston, Texas, 2010 [8]. 
Consider the terminology used in the file [8]. 
Page /5: "Intersection", "Sum", "Direct Sum of Subspaces", "Factor 

Spaces", "Inner Product Spaces", |Reciprocal Basis|. 
Page 62/: "The factor space is also called a quotient space". 
Page 76/ "Reciprocal Basis"(an analog of dual basis). 
Page 158/166: "Spectral Decomposition for Hermitian Endomorphisms" 

 
 

Section 31. Linear Functions, the Dual Space.  
Page 203/211:   vector in a space itself vs. covector in a dual space. 
Section 32. The Second Dual Space, Canonical Isomorphisms. 
Section 33. Multilinear Functions,  
Tensors, page 218/226:  
 

 
 

Our remark on the file [8] is: that was the first mention of "tensor" in the 
content table (it is straight multi rank tensor). 

Tutorial reference 5.  
"Tensors: A guide for undergraduate students", 2013 [9]. 
Page 498/2: "A guide on tensors is proposed for undergraduate students 

in physics or engineering that ties directly to vector calculus in orthonormal 
coordinate systems. We show that once orthonormality is relaxed, a dual basis, 



 
 
 
 
Вісник Національного технічного університету "ХПІ", 2018, № 42 (1318)  

ISSN 2079-0031 (Print)  ISSN 2411-0558 (Online) 
 

 88 

together with the contravariant and covariant components, naturally emerges. 
Manipulating these components requires some skill that can be acquired more 
easily and quickly once a new notation is adopted".  

Consider terminology: Page 499/3:  
"Between any two vectors is defined a dot (or scalar) product, a 

commutative rule that associates a real number to each pair of vectors". "In the 
3D space, a cross (or vector) product is defined".  

Consider definition of tensor.  
Page 500/4:  
 

 
 

Page 501/5: 
 

 
 
Our remarks on the file [9] are: 
1) Quantities with such a character and defined in an N-dimensional 

space are called tensors and, more specifically, rth-rank tensors if they have Nr 
components.  

Reference 6. "A gentle introduction to tensors", 2014 [10]. 
Page 1/2:  
"Tensors and transformations are inseparable. To put it succinctly, 

tensors are geometrical objects over vector spaces, whose coordinates obey 
certain laws of transformation under change of basis. Vectors are simple and 
well-known examples of tensors, but there is much more to tensor theory than 
vectors". 
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"I have used the coordinate approach to tensors, as opposed to the formal 
geometrical approach. Although this approach is a bit old fashioned, I still find 
it the easier to comprehend on first learning, especially if the learner is not a 
student of mathematics or physics". 

 

Page 4/5:   
 

 
 

Page 14/15: 
 

 
 

Our remarks on the file [10] are the following.  
1) Terminology: "old basis", "new basis", "vector", "covector", "linear 

operators", "tensor valency".  
2) "We will not attempt to define tensors in abstract terms…". 
Reference 7. "Tensor Analysis and Elementary Differential Geometry 

for Physicists and Engineers", Chapter 2 – Tensor Analysis, Berlin, 2014 [11]. 
 

Page 36/2 says:  
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Our remarks on the file [11] following: This is a typical abstract 
definition of general case tensor form.  

Reference 8. "Introduction to tensor calculus", Dep. of Physics & 
Astronomy, Univ. College, London, 2016 [12]. 

Pages (5 – 6)/(6 – 7):  
"Vectors are broadly geometric objects which are uniquely identified by 

their magnitude (length) and direction in a presumed underlying space". "At 
this early stage in these notes, we generically define "tensor" as an organized 
array of mathematical objects such as numbers or functions". 

"Non-indexed (lower or upper case) bold face Latin letters (e.g. a, A) are 
used for vectors. The exception to this is the basis vectors where indexed bold 
face lower or upper case symbols are used".  

"Non-indexed upper case bold face Latin letters (e.g. A, B) are used for 
tensors (i.e. of rank > 1)". "Indexed light face italic symbols (e.g. ai and Bj

ki) 
are used to denote tensors of rank > 0 in their explicit tensor form (index 
notation). Such symbols may also be used to denote the components of these 
tensors". 

Page 11/12: "A tensor is an array of mathematical objects (usually 
numbers or functions) which transforms according to certain rules under 
coordinates change. In a d-dimensional space, a tensor of rank-n has dn 
components …". 

Page 13/14: "Each tensor index should conform … either covariant or 
contravariant. For orthonormal Cartesian coordinate systems, the two variance 
types (i.e. covariant and contravariant) do not differ…". 

Our remarks on the file [12] following. 1) Much attention paid to 
accurate and consistent notification of the terms. 2) Given definition of tensor 
is not explicit. 3) It is claimed, that in Cartesian coordinate system both two 
principal forms of tensor (covariant and contravariant) match up. 

 

Page 30/31 says about the tensor multiplication. 
 



 
 
 
 
Вісник Національного технічного університету "ХПІ", 2018, № 42 (1318)  

ISSN 2079-0031 (Print)  ISSN 2411-0558 (Online) 
 

 91 

 
 

Page 31/32: "Not every tensor can be synthesized as a product of lower 
rank tensors”. 

Page 32/33: "In general, the inner product is not commutative. When one 
or both of the tensors involved in the inner product are of rank > 1 the order of 
the multiplicands does matter". Another fragment of this page is: 

 

 
 

Our remarks on the file [12] (continued). 
4) The tensor multiplication like ⊗  looks similar to matrix operations.  
5) The statement on p.31/32 contradicts the general tensor definition.  
6) The statement on p. 32/33 about the cumulativeness indicates the non-

consistence of given tensors introduction. Another statement provokes 
confusion around the terms "dot product", "inner product of tensors", "outer 
product", "scalar product" etc.  

To our mind, too many identical terms are involved in such explanation. 
Also many special operations added into tensor algebra: contraction (p.31/32), 
permutation and quotient rule (p. 34/35), which is close to matrix algebra.   

Analyzing the cited above tutorials on tensor calculus for students, we'll 
highlight the following cognitive aspects of tensor method. 

1) There is no common definition of tensor among the specialists. Some 
of them introduce tensor as a special type of vector/covector multiplication 
(vectors understood as first rank tensors); other ones determine tensor through 
multiplication of vector spaces and dual vector spaces, taken from a common 
Euclidian space.  
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2) The core issue of a dedicated introduction to tensor analysis is how to 
explicitly define the first rank covariant and contravariant tensors.  

3) The "plane" thesaurus of basic terms in known textbooks on tensors 
(vector, space, tensor etc.) leads to logical contradictions noted above.  

Objective of this work is outlining a cognitive tensor model of a system 
on the basis of Von Neumann classes of hierarchy.  

   

3. Outlines of tensor model based on Von Neumann classes 
In this section core outlines and definitions are presented for 

construction a holistic tensor model of a physical system based on hierarchical 
set theory by J. Von Neumann (aka Neumann’s classes). The following 
methodological principles are proposed for a cognitive tensor modeling. 

1) In a cognitive tensor model, the standard matrix algebra forms the 
operational basis (first of all, the well-known matrix multiplication rule, [22]). 
Therefore, no special operations and related cumbersome terms will be 
introduced for tensors (like Einstein’s summation notation i

iexx = , dyad 
product uv , tensor multiplication vu ⊗ , tensor components etc.). 

2) In a cognitive tensor model, the set of empirical data in some physical 
units (e.g. power, energy) will form a core layer (zero-order Neumann’s class) 
for construction subsequent tensor-related terms and objects (high-order 
Neumann’s classes). Therefore, no predetermined spaces and their bases are 
needed more (like vector space, factor space, quotient space, reciprocal space, 
orthonormal basis, Cartesian basis, normal basis, affine basis etc.). Only two 
spatial categories (i.e. vector space U

r
 and dual vector space U

s
) will be 

determined over initially given matrix H of empirical data.  
3)  In a cognitive tensor model, one more type of vector coordinates will 

be adopted (i.e. normal coordinates) in addition to conventional covariant and 
contravariant coordinates. This admits an accurate axiomatic definition of the 
first-rank covariant and contravariant tensors in terms of the first-order 
Neumann’s class.  

Based on declared above principles, we present a consistent axiomatic 
scheme for a cognitive tensor model of physical system. Let be given 
Hermitian matrix of empirical data measured on a physical system in abstract 
units of square magnitude )( 2µ . 

Axiom 1.  
Let be given a nonsingular Hermitian matrix ℘Η  of empirical data 

measured on a physical system ℘ in abstract units of square magnitude )( 2µ . 
Matrix ℘Η  considers be initial term of zero-order Neumann’s class tied to 
system℘. 
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Axiom 2.  
The Hermitian matrix ℘Η  of empirical data measured on physical 

system ℘ in square magnitude units )( 2µ , be mapped on a scalar product  

℘=⋅ HUU :  of an abstract vector rapper },,{: 21 KUUU =  in linear 

magnitude units )()( 1 µ=µ . The scalar product UU ⋅   and vector rapper U  

consider be terms of the first-order Neumann’s class.   
Axiom 3.  
3.1. The vector rapper U  in linear magnitude units )(µ , which 

predefined by its scalar product UU ⋅  retrieved from Hermitian matrix 

UUH ⋅→℘  of empirical data measured on a physical system ℘ in square 

magnitude units )( 2µ , determines a local in time Euclidian space )( ℘HE   tied 
to the system ℘. 

3.2. The Euclidian space )( ℘HE  tied to the system℘, is defined by the 
orthonormal coordinate basis { },...e,e: 21=er  in physical units of an abstract 

magnitude )(µ  due to the presentation the vector rapper U  by the Hermitian 

matrix ℘+= HU  of its normal coordinates in basis e .   

Definition 1. Hermitian matrix ℘+= HU  of the normal coordinates in 
basis er  with physical units of an abstract magnitude )(µ  we define as 

fundamental covariant (on rapper U ) first rank tensor, which is determined in 
local Euclidian space )( ℘HE  [23]. 

Euclidian space )( ℘HE , basis er  and fundamental tensor U  consider be 
terms of the first order Neumann’s class. Along with the fundamental tensor 
U , which is determined above, some other fundamental first rank covariant 
tensors can be defined; all these tensors we call "fundamental" because of their 
common origin from Hermitian matrix ℘Η  of empirical data tied to physical 
system ℘. Therefore, all the fundamental tensors are nonsingular (have their 
inverse forms), and each of a fundamental tensor uniquely defines the local 
Euclidian space )( ℘HE . 

Definition 2. Let an arbitrary Z be a fundamental (nonsingular) first-rank 
tensor, which is covariant on some vector rapper ( )℘⊆ HEZ

rr
 in a local 
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Euclidian space ( )℘HE
r

. The object 1: −= ZZ we define contravariant on Z
r  first 

rank tensor in ( )℘HE
r

.  
Definition 3. If A and B  are fundamental first rank tensors, the matrix 

multiplication *: BAC ⋅=  we define as second-rank fundamental tensor in a 
local Euclidian space ( )℘HE

r
; the type of tensor C  is defined by the types of 

multiplication members.  Four types are possible hereby:  
double covariant tensor ABC , double contravariant tensor ABC , covariant 

on A and contravariant on B  tensor B
AC , contravariant on A and covariant on 

B tensor B
AC .  

As matrix multiplication is not commutative operation, four other 
fundamental tensors of second rank can be constructed by A and B : 

.,,,: *
A

BA
B

BA
BA CCCCABC →⋅=  

All the fundamental tensors we declare as members of the first-order 
Neumann’s class.  

Definition 4. If an arbitrary nonsingular tuple of vectors V
r

 is presented 
by the matrix V  of normal coordinates in orthonormal basis er  of Euclidian 
space ( )℘HE

r
, then matrix V  we define as spawned covariant on V

r
 first rank 

tensor, and matrix 1: −= VV − spawned contravariant on V
r

first rank tensor in 
( )℘HE

r
. The multiplication of r  first-rank spawned tensors we define as r-rank 

spawned tensor. All the spawned tensors we declare as members of the 
second-order Neumann’s class (concisely called "tensors").  

Conclusion. 
Tensor methodology is a powerful mathematical tool used in physics, 

system engineering and others realms. In technical universities, variety of 
approaches is used for tensors study. However, in known guides for 
undergraduate students tensors still remain about a mystery. Academic 
disciplines on tensors are not provided by the solid theoretical foundation, and 
most of the formal terms are commonly determined in a "flat" logical 
architecture inherent to Cantor set theory which suffers known paradoxes.    

In present paper there applied hierarchical Neumann’s classes to provide 
a holistic cognitive tensor model of a physical system. Three Neumann’s 
classes are introduced: class 0 for empirical data on system relationships, class 
1 for fundamental tensors, and class 2 for spawned tensors (concisely called 
"tensors").  

This approach opens the way for further strict classification of tensors, in 
their connection with vector properties in elementary geometry and classical 
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functional analysis in finite-dimensional Euclidean spaces. Eventually, the 
introduction to tensor algebra behind the Neumann’s classes becomes more 
comprehensive and understandable by the target audience.   
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Когнітивна тензорна модель системи на основі класів Фон Неймана 

/ Тіхонов В.I., Тихонова О.В. // Вісник НТУ "ХПІ". Серія: Інформатика та 
моделювання. – Харків: НТУ "ХПІ". – 2018. – № 42 (1318). – С. 82 – 97. 

У роботі розглядаються проблеми вивчення тензорного обчислення в 
технічних університетах. Для просування цілісного розуміння тензорів 
студентами, запропоновано когнітивну тензорну модель фізичної системи на 
основі ієрархічних класів Джона фон Неймана. Бібліогр.: 23 назв. 
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97. 

В статье рассматриваются проблемы изучения тензорного исчисления в 
технических университетах. Чтобы способствовать целостному пониманию 
тензоров студентами, предложена когнитивная тензорная модель физической 
системы на основе иерархических классов Джона фон Неймана. Библиогр.: 23 
назв. 
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The paper focuses issues of tensor calculus study in technical universities. To 
promote a holistic insight on tensors by undergraduates, there proposed a cognitive 
tensor model of a physical system on the base of hierarchical John Von Neumann 
classes. Refs.: 23 titles. 

Keywords: cognitive tensor model; physical system; Neumann classes. 
 

 


