

Вісник Національного технічного університету "ХПІ", 2022, № 1–2 (7-8)

ISSN 2079-0031 (Print) ISSN 2411-0558 (Online)

 5

UDC 004.75:004.9 DOI: 10.20998/2411-0558.2022.02.01

О. MNUSHKA, Sen. Lect., NTU "KhPI",
S. LEONOV, Dr. Sc. (Engineering), Prof., NTU "KhPI",
V. SAVCHENKO, Cand. Sc. (Engineering), Assoc. Prof., NTU "KhPI"

CONTINUOUS INTEGRATION FOR A DEVELOPMENT
PROCESS OF THE INFORMATION TECHNOLOGY OF
REMOTE MONITORING AND CONTROL

The current state of using CI/CD in commercial and open-source projects is analyzed.

CI/CD pipelines are shown to be essential to the modern software development process, where
they are used to configure workflows. Centralized and distributed approaches to building a
software source code version control system are analyzed. For the web-oriented SCADA project,
the choice and use of the version control system are justified. We provide concrete examples of
using CI/CD that will allow ordinary developers, not DevOps specialists, to take the first steps
to configure workflows for their projects and provide basic steps for configuring task execution
using the example of the build and test phase of the source code of a real project that uses several
programming languages. Figs.4. Refs. 20 titles.

Keywords: CI; CD; VCS; git; workflow; actions; building; testing; Agile.

Introduction. Web-oriented supervisory and control systems are used in

various fields to acquire data and make control based on data analysis and
implemented algorithms. It is a SCADA system but in the Web or a cloud. The
development of such systems faces many problems caused by the complexity of
processes, and a wide range of equipment – from physical quantity sensors to
routers, modems, server equipment, etc. [1]

The development process consists of several big subprojects:
- embedded systems for working with field equipment;
- a collecting and intermediate data storage subsystem;
- a centralized data storage and processing system;
- a visualization system for the control process;
- security and safety systems;
- a system for providing paid services, usually based on a subscription,

unlike traditional turnkey systems delivered to the customer.
In addition, a wide range of technologies used in the development process:

development of embedded systems in assembler and C/C++/Python/Java;
development of applied data exchange protocols; development of a database; and
Web development of traditional and mobile applications.

For the systems under consideration, there is a task of ensuring the
interaction of developers, monitoring the implementation of customer

© O. Mnushka, S. Leonov, V. Savchenko, 2022

Вісник Національного технічного університету "ХПІ", 2022, № 1–2 (7-8)

ISSN 2079-0031 (Print) ISSN 2411-0558 (Online)

 6

requirements and monitoring the compliance of the process with accepted
practices; Actual changes to the program code and system architecture;
documentation and elimination of bugs; issuing software patches upon detection
of security problems in the technologies and tools used.

It is necessary to determine the process of developing hardware and
software based on Agile, Scrum, Waterfall, or something else.

The problem statement and analysis of literature.
A. Continuous Integration, Delivery, and Development.
Continuous Integration (CI) is used to automate the building and testing of

programming code and deliver artifacts based on a centralized architecture and
fixed schedule.

As described in [2], CI is one of the programming practices that leads to
improved release rates and predictability. It is a good choice for improving code
quality, communication, and sharing experience between developers, due to the
complexity and wide use of the terminology of the development process, 22
clusters of descriptive statements related to CI, which are used as the base for the
descriptive model of continuous integration implementations. As shown, there is
a problem of correlations between differences in practice and differences in
experience, which may lead to some misunderstanding of CI effects on the
process.

In [3] a collection of patterns of planning, managing, and executing CI was
proposed. The patterns can be helpful for cross-platform agile-based
development. As shown, there are three main categories of a task – artifacts
management, source code mandatory, and build execution, which are represented
as ten patterns used for planning. Each pattern means a solution for some
specified tasks like “Create a platform-specific installation program for the cross-
platform product.” Using the patterns leads to reduced build time, simplifies
dependency management, and decreases the probability of unsuccessful builds.

In [4], the best practices of CI for rapid application development are
discussed. CI is a set of engineering tools used for daily tasks like bug tracking,
version control, code review, etc. CI does not cover all needs of development
teams and not only infrastructure for building and running. However, CI is a
practice that may be successful. Each engineer has the same vision of the process
as other teammates. In addition, it is crucial to allow an engineer to use local CI
runs before any commits into the main build plan that prevents inconsistency and
broken builds.

Including performance benchmarks in CI execution plans make it possible
to use DevOps engineers to find some specific issues in the development code.
Regression benchmarks are tools for application monitoring on a regular base.
As shown in [5], it is a good practice to include some performance benchmarks

Вісник Національного технічного університету "ХПІ", 2022, № 1–2 (7-8)

ISSN 2079-0031 (Print) ISSN 2411-0558 (Online)

 7

as early as possible in the development process. As a result, regular monitoring
can help developers to find hidden issues not related to QA and improve software
quality.

In [6], it is shown that including benchmarks in CI and CD (Continuous
Delivery) leads to the enchantment of code quality. As a benchmarking
environment, virtual cloud servers are used. Results represented as CPU and
memory loads, threads, IO, and network traffic can be used for real application
performance tuning.

As shown in [7], for Agile-based projects, CI and other programming
practices like extremal programming help new and growth development teams
and organizations improve software development and delivery processes and
reduce expenses. Therefore, the Agile-based development process is a good
choice for predictable results and controlling expenses.

CI has not only benefits but also some problems, such as security and
additional expenses for CI. As shown in [8] additional yearly costs are about 9.7
percent recalculated to all FLOSS (Free, Libre, and Open Source Software)
projects. Therefore, for economic reasons, some FLOSS projects decline regular
CI. On the other hand, for commercial projects, risks related to the low quality
of the code are higher than costs for CI, so CI is the excellent choice for such
projects.

Security vulnerabilities are the next issue for CI, which is more vulnerable
to attacks and misconfiguration than conventional software development tools
[8]. Of course, here we are talking about publicly available servers like Jenkins
(https://www.jenkins.io). There are four main steps: checkout code from the
version control system; build preparations; build runs; notifications - all of them
are the potential target of an attack. The concept of a secure build server (SBS)
was proposed. SBS is back to an original and uncompromised state after each
build job in this concept, so the public build server is usable for many small
commands. Therefore, using the public build server may affect all jobs or teams
and is not a good choice for big projects.

As shown in [9], developers face trade-offs between various aspects during
a software development process. Some of them are guaranteed speed and
availability of resources, information security and access to resources, ease of
use, and flexible configuration. Most of these challenges are solved with CI as it
automates the compilation, building, and testing of software. However, some
problems need to be considered more precisely. For example, desired and actual
build times for developers or using flaky test identification tools.

B. CI in projects.
In [10], implementing CI (Travis-CI) in the GitHub-based project was

analyzed. On large massive of historical data was shown that CI helps to improve

Вісник Національного технічного університету "ХПІ", 2022, № 1–2 (7-8)

ISSN 2079-0031 (Print) ISSN 2411-0558 (Online)

 8

teams’ productivity and leads to the integration of more outside contributions
without an observable diminishment in code quality.

In [11] a new architecture framework named Cinders was presented. It was
shown that a single architectural framework could be designed to encompass the
previous CI and CD modeling techniques, representing their specific concerns as
viewpoints rendered from the same underlying data model.

GNOME [12] is a big open-source project that depend on a big number of
community developers. It uses a git-like approach to the building and
deployment of applications. For now, the package-based distribution model of
GNOME components leads to many inconsistencies for non-technical
developers. OSTree CI system was presented. It consists of three independent
parts related to working with the version control system, build, and deployment
system. OSTree is based on Yocto provided minimal system build (core) and
applications build. It leads to the improvement development process for git-like
applications in contrast to the package model.

In [13], the framework that identifies software quality characteristics of the
(unnamed) financial software development process that uses CI was presented.
Some quality metrics are used, such as time to develop, introduced bugs, time to
deliver, test quality, documentation, change management, and and cost model.
The main benefit of CI is a single requirement model used for development and
testing, which leads to a transparent process for developers and management
teams. All requirements are documented and approved by a product owner.

In [14], a pattern-based framework for CI and QA of the EGEE Grid
Middleware software development project has been presented. The main benefits
are better integration of components on multiple platforms, fast bug and problem
tracking, and other improvements in the process. Furthermore, the build system
was balanced against the need for flexibility and rapid prototyping.

CI, as Agile technology, is widely used in various application development
processes, from small open-source to big commercial or government-distributed
applications. The main benefit of CI is a clearer and more predictable
development process. But, there is no universal solution for all, each time, we
need to consider many factors before integrating CI into the development
process. There are open-source and commercial versions of CI tools. Some of
them are deeply integrated with other tools like Atlassian Bamboo, while others
are independent, like Jenkins or TravisCI, and used in many integration variants.

The publication aims to analyze the main principles and state of the art in
the field of Continuous Integration and continuous delivery, analyzing
approaches to building and executing workflows for projects that use distributed
version control systems.

Continuous Integration for web-based SCADA. Consider the prototype

Вісник Національного технічного університету "ХПІ", 2022, № 1–2 (7-8)

ISSN 2079-0031 (Print) ISSN 2411-0558 (Online)

 9

of a continuous integration system and the main tasks solved by the functional
blocks of the system (Fig. 1).

Let us define three main flows inside the development process:
development, building and testing, and automated deployment.

Fig. 1. CI prototype (authors)

Deployment flow means direct use of VCS server by developers and it is

permanent storage for source code for all subproject teams.
Developers use local resources for building and testing it would be better

to use local CI runs to debug requirements and issues. At least, it is possible to
create local testing infrastructure like a remote one, run build and test plans for
subproject before committing in the VCS tree.

VCS server includes review capabilities for approving changes before
committing and pull request for discussing and reviewing the potential changes
with collaborators.

Historically there were the two different approaches to build VCS
subsystem – centralized and decentralized VCS. The centralized version control
systems like Concurrent Versions System (CVS,
https://savannah.nongnu.org/projects/cvs) and its successor Apache Subversion
(SVN, CollabNet, and Apache Software Foundation,
https://subversion.apache.org/) are based on client-server architecture and
centralized remote or local data storage. Such an approach allows having a
centralized database of all versions of project files. Developers can obtain the
needed file version and work with it. After they are finished, they send a file back
to the VCS server. In addition, any developer can check the tasks of other
developers and have imagination about the project’s current state. The

Вісник Національного технічного університету "ХПІ", 2022, № 1–2 (7-8)

ISSN 2079-0031 (Print) ISSN 2411-0558 (Online)

 10

administrators have complete control of project files (database), so it is easy to
support such a system. However, in this approach to building VCS, there is a
bottleneck, and it is a VCS server. If something happens with a VCS server, all
project files will be unavailable for some period, affecting some project tasks,
i. e. Berkeley DB issues in the first versions of Subversion. Also, any storage
issues can lead to the loss of project history, which is the main disadvantage of
such systems. So, centralized VCS were de-facto standards for a long time, and
some projects still use them, but their popularity decreased after distributed
(decentralized) VCS were developed and introduced.

There are several distributed VCS, such as Git, Bazaar, Mercurial etc. In
distributed VCS the complete project codebase is mirrored on every developer’s
computer, and every developer has an entire project version history. Such a VCS
allows for easy branching and merging processes. Furthermore, developers may
work offline and push their changes into the central repository when they return
online. It is crucial, for example, in the COVID-19 pandemic restrictions to work
out of the office and for other unpredictable situations like blackouts, hurricanes,
snowstorms, etc. For all mentioned cases, distributed VCS allows independent
working for each development team member and synchronized changes when
possible.

The next advantage of distributed VCS is automatic “multiply backups,”
i. e. multiple complete copies of the project repository but maybe for different
stages. So it is required to synchronize repositories using some remote server.
Developers can work with different remote servers and teams in one project; also,
distributed VCS can be used to set up different workflows in a project.

For distributed VCS (Git), we can face some disadvantages such as security
issues, productivity issues for projects with many repositories for workflows
using CI/CD, and many non-text files (different containers, virtual machines,
multimedia), and so on.

For the project under development [16, 17], we decided to use Git VCS
and keep the project in a private repository on github.com.

GitHub allows to set up of workflows based on its Actions [18]. To setup
the workflow, we need to define YAML [19] configure file like the following
(based on https://docs.github.com/en/actions/quickstart):

name: GitHub Actions Demo
run-name: GitHub Actions (${{ github.actor }})
on: [push]
jobs:
 Explore-GitHub-Actions:
 runs-on: ubuntu-latest
 steps:

Вісник Національного технічного університету "ХПІ", 2022, № 1–2 (7-8)

ISSN 2079-0031 (Print) ISSN 2411-0558 (Online)

 11

 - run: echo “The job was automatically triggered by a ${{
github.event_name }} event.”

 - run: echo “This job is now running on a ${{ runner.os }} server hosted
by GitHub!”

 - run: echo “The name of your branch is ${{ github.ref }}."
 - name: Check out repository code
 uses: actions/checkout@v3
 - run: echo “The ${{ github.repository }} repository has been cloned

to the runner.”
 - run: echo “The workflow is now ready to test your code on the

runner.”
 - name: List files in the repository
 run: |
 ls ${{ github.workspace }}
 - run: echo “This job’s status is ${{ job.status }}."

In this YAML file, we defined when actions should run (on every push

event) and job (Explore-GitHub-Actions) that runs on the ubuntu-latest server
and consists of seven steps. Also, some steps use predefined actions such as
"actions/checkout@v3" [18]. As a result, we have a simple workflow (Fig. 2)
that is executed every time we push in our repo. To disable a workflow, we need
to use GitHub Actions web interface. Also, we can have many Actions-based
workflows in one project.

Fig. 2. GitHub Actions example (fragment)
Another approach is using CircleCI [20], which allows automated builds

across multiple environments. It can be used with GitHub for free up to 6,000

Вісник Національного технічного університету "ХПІ", 2022, № 1–2 (7-8)

ISSN 2079-0031 (Print) ISSN 2411-0558 (Online)

 12

build minutes per month. We must complete only two steps to use CircleCI with
GitHub projects: authorizing the CircleCI application and defining a YAML
configuration file. Let’s define the YAML configuration file for building and
testing our sub-project, which we used for testing different features and
components of the information technology of remote monitoring and control [16,
17]:

version: 2.1
jobs:
 build:
 docker:
 - image: ubuntu:latest
 steps:
 - checkout
 - run: |
 apt -y update
 apt -y upgrade
 - run:
 apt install -y python3 python3-pip
 - run:
 apt install -y mosquitto
 - run:
 apt install -y nodejs npm
 - run:
 python3 -u -m pip install -r requirements.txt
 - run:
 npm i webpack webpack-cli html-webpack-plugin
 - run: |
 cd ~/miniature-broccoli/react-app/
 npx -y browserslist@latest --update-db
 rm -rf node_modules
 rm -f package-lock.json
 npm cache clean --force
 npm install
 npm run build
 - run: |
 python3 -u -m pip install pytest
 cd ~/miniature-broccoli
 pytest tests/Test.py
workflows:
 microScada:
 jobs:
 - build

Вісник Національного технічного університету "ХПІ", 2022, № 1–2 (7-8)

ISSN 2079-0031 (Print) ISSN 2411-0558 (Online)

 13

Fig. 3. CircleCI dashboard (fragment)

Fig. 4. CircleCI workflow execution results (fragment)

By default, CircleCI expects the YAML configuration file config.yml in
the .circle folder in the project’s root folder. After adding the configuration file
and pushing it into the GitHub repository

Вісник Національного технічного університету "ХПІ", 2022, № 1–2 (7-8)

ISSN 2079-0031 (Print) ISSN 2411-0558 (Online)

 14

Results. As the first result of the analysis and testing, we have chosen
distributed model for the version control system and github.com as the host for
our project under active development.

We have investigated two approaches to building and executing a
workflow with GitHub Actions and CircleCI. GitHub Action is fully integrated
into GitHub and can be used with public and private repositories. CircleCI is a
standalone CI that can be used with GitHub projects.

Both approaches allow flexible workflow configuration with YAML
configuration files, and they are independent of all other project codebases in
terms of project code and can be used in parallel. In addition, they use similar
but slightly different syntaxes for describing a workflow.

The main workflow is defined in the steps section and includes the
sequence of actions (checkout) and commands (run). Any valid combination of
Linux (or Unix) shell commands is allowed here; also, we can use the make,
cmake, and other automation tools. However, in our example, we omit
automation tools usage to show how we can define workflow manually.

Using predefined Actions for GitHub and Orbs for CircleCI speeds up
YAML configuration with reusable and tested configuration.

The workflow execution results (Fig. 2 – 4) are represented on the web
interface for both providers and show detailed data about each defined in the
YAML configuration file steps.

Conclusion. CI/CD pipelines are essential to the modern software
development process. Today most projects use CI/CD to set up workflows.
Commercial projects usually use a DevOps team responsible for CI and CD.
DevOps team tries using best practices to set up different workflows and speed
up a development process.

CI/CD is useful for teams that use Agile, Waterfall, and V-model for project
management. Agile projects, as the most flexible type of project management,
strictly depend on CI/CD because they use short-time periods (iterations) when
some new features should be developed and tested.

The results can be used to set up basic workflows for different projects
based on Git VCS. We provide specific examples that will allow ordinary
developers, not DevOps specialists, to take the first steps to configure workflows
for their projects and give some basic steps to configure job execution on the
example of the real sub-project MVP. Also, we describe only the build and testing
stage because it is a prevalent task for all projects.

The prospects for further research are the optimization of work processes
according to various criteria and the possibility of using CI/CD opportunities to
improve the educational process of computer engineering and computer science
specialists.

Вісник Національного технічного університету "ХПІ", 2022, № 1–2 (7-8)

ISSN 2079-0031 (Print) ISSN 2411-0558 (Online)

 15

References:
1. Mnushka, O. and Savchenko, V. (2019). Security model of an information system based on
IoT technologies, Bulletin of the National Technical University "KhPI", A series of "Information
and Modeling", 0(28 (1353)). doi:10.20998/2411-0558.2019.28.09.
2. Ståhl, D. and Bosch, J. (2014). Modeling continuous integration practice differences in
industry software development, Journal of Systems and Software, 87, pp.48-59.
doi:10.1016/j.jss.2013.08.032.3.
3. Hsieh, C.-Y. and Chen, C.-T. (2015). Patterns for Continuous Integration Builds in Cross-
Platform Agile Software Development. Journal of Information Science and Engineering, vol. 31,
pp. 897-924.
4. Abdul, F.A. and Fhang, M.C.S. (2012). Implementing Continuous Integration towards rapid
application development. 2012 International Conference on Innovation Management and
Technology Research. doi:10.1109/icimtr.2012.6236372.
5. Waller, J., Ehmke, N.C. and Hasselbring, W. (2015). Including Performance Benchmarks into
Continuous Integration to Enable DevOps. ACM SIGSOFT Software Engineering Notes, 40(2),
pp.1–4. doi:10.1145/2735399.2735416.
6. Arachchi, S.A.I.B.S. and Perera, I. (2018). Continuous Integration and Continuous Delivery
Pipeline Automation for Agile Software Project Management. 2018 Moratuwa Engineering
Research Conference (MERCon), Moratuwa, pp. 156-161.
doi:10.1109/MERCon.2018.8421965.
7. Boehm, B. and Turner, R. (2005). Management Challenges to Implementing Agile Processes
in Traditional Development Organizations. IEEE Software, 22 (5), pp. 30-39.
doi:10.1109/ms.2005.129.
8. Gruhn, V., Hannebauer, C. and John, C. (2013). Security of public continuous integration
services. Proceedings of the 9th International Symposium on Open Collaboration - WikiSym ’13.
doi:10.1145/2491055.2491070.
9. Hilton, M., Nelson, N., Tunnell, T., Marinov, D. and Dig, D. (2017). Trade-offs in continuous
integration: assurance, security, and flexibility. Proceedings of the 2017 11th Joint Meeting on
Foundations of Software Engineering, pp. 197-207. doi:10.1145/3106237.3106270.
10. Walters, C., Poo-Caamano, G. and German, D.M. (2013). The future of continuous
integration in GNOME. 2013 1st International Workshop on Release Engineering (RELENG),
San Francisco, CA, pp. 33-36. doi:10.1109/releng.2013.6607695.
11. Vasilescu, B., Yu, Y., Wang, H., Devanbu, P. and Filkov, V. (2015). Quality and productivity
outcomes relating to continuous integration in GitHub. Proceedings of the 2015 10th Joint
Meeting on Foundations of Software Engineering - ESEC/FSE 2015.
doi:10.1145/2786805.2786850.
12. Ståhl, D. and Bosch, J. (2018). Cinders. Proceedings of the 2018 International Conference
on Software and System Process, vol. 83, pp. 76-93. doi:10.1145/3202710.3203165.
13. Hamdan, S. and Alramouni, S. (2015). A Quality Framework for Software Continuous
Integration. Procedia Manufacturing, 3, pp.2019-2025. doi:10.1016/j.promfg.2015.07.249.
14. Meglio, A., Flammer, J., Harakaly, R., Zurek, M. and Ronchieri, S. (2005). A pattern-based
continuous integration framework for distributed EGEE grid middleware development. 14th
International Conference on Computing in High-Energy and Nuclear Physics, pp. 579-582
[online] Available at: https://cds.cern.ch/record/865656/files/p579.pdf [Accessed 7 Dec. 2022].
15. Continuous Integration Impediments in Large-Scale Industry Projects. 2017 IEEE
International Conference on Software Architecture (ICSA), pp. 169-178.
doi:10.1109/icsa.2017.11.
16. Mnushka, O., Savchenko, V., Leonov, S. and Shaposhnikova, O. (2021). Information
Technology of Remote Monitoring and Control. 2021 International Conference on Electrical,

Вісник Національного технічного університету "ХПІ", 2022, № 1–2 (7-8)

ISSN 2079-0031 (Print) ISSN 2411-0558 (Online)

 16

Computer, Communications and Mechatronics Engineering (ICECCME).
doi:10.1109/iceccme52200.2021.9590889.
17. Mnushka, O., Leonov, S., Shaposhnikova, O. and Savchenko, V. (2021). Model of
information technology of remote monitoring with a possibility of control of technological
processes and objects. Bulletin of the National Technical University ‘KhPI’ A series of
‘Information and Modeling’, (1 (5)), pp.99–114. doi:10.20998/2411-0558.2021.01.08.
18. GitHub. (n.d.). GitHub Actions. [online] Available at: https://github.com/actions [Accessed
10 Nov. 2022].
19. Yaml.org. (2011). The Official YAML Web Site. [online] Available at: https://yaml.org/
[Accessed 15 Nov. 2022].
20. CircleCI. (n.d.). Continuous Integration and Delivery. [online] Available at:
https://circleci.com. [Accessed 5 Nov. 2022].

Статтю представив д.т.н., проф. Національного технічного університету
"Харківський політехнічний інститут" О.А. Серков.

Поступила (received) 06.11.2022

Mnushka Oksana, Senior Lecturer, M.S. (Computer. Science)
National Technical University "Kharkiv Polytechnic Institute"
2, Kyrpychova str., Kharkiv, Ukraine, 61002
Tel.:(050)2428846, e-mail: mnushka.ov@gmail.com
ORCID ID: 0000-0001-7756-9260

Leonov Serhii, Dr. Sc. (Engineering), Professor
National Technical University "Kharkiv Polytechnic Institute"
2, Kyrpychova str., Kharkiv, Ukraine, 61002
Tel.: (099) 9119113, e-mail: serleomail@gmail.com
ORCID ID: 0000-0001-8139-0458

Savchenko Volodymyr, Cand. Sc. (Engineering),
National Technical University "Kharkiv Polytechnic Institute"
2, Kyrpychova str., Kharkiv, Ukraine, 61002
Tel.:(067)5767884, e-mail: savchenko@live.com
ORCID ID: 0000-0001-6548-0891

Вісник Національного технічного університету "ХПІ", 2022, № 1–2 (7-8)

ISSN 2079-0031 (Print) ISSN 2411-0558 (Online)

 17

УДК 004.75: 004.9
Безперервна інтеграція для процесу розвитку інформаційних

технологій віддаленого моніторингу та управління / Мнушка O., Леонов С.,
Савченко В. // Вісник НТУ "ХПІ". Серія: Інформатика та моделювання. – Харків:
НТУ "ХПІ". – 2022. – № 1 − 2 (7 − 8). – С. 5 – 17.

Проаналізовано поточний стан використання CI/CD у комерційних та open-
source проектах. Показано, що конвеєри CI/CD є важливими для сучасного
процесу розробки програмного забезпечення, де вони використовуються для
налаштування робочих процесів. Проаналізовано централізований та
розподілений підходи до побудови системи контролю версій вихідного коду
програмного забезпечення. Для веб-орієнтованого проекту SCADA обґрунтовано
вибір і використання системи контролю версій. Ми надаємо конкретні приклади
використання CI/CD, які дозволять звичайним розробникам, а не фахівцям
DevOps, зробити перші кроки для налаштування робочих процесів для своїх
проектів і надамо базові кроки для налаштування виконання завдань на прикладі
фази збірки та тестування джерела. код реального проекту, який використовує
кілька мов програмування. Іл.: 4. Бібліогр.: 20 назв.

Ключові слова: CI; CD; VCS; git; workflow; actions; building; testing; Agile.

UDC 004.75: 004.9

Continuous Integration for a development process of the information
technology of remote monitoring and control / Mnushka O., Leonov S.,
Savchenko V. // Herald of the National Technical University "KhPI". Series of
"Informatics and Modeling". – Kharkov: NTU "KhPI". – 2022. – № 1 – 2 (7 – 8). – P. 5
– 17.

The current state of using CI/CD in commercial and open-source projects is
analyzed. CI/CD pipelines are shown to be essential to the modern software
development process, where they are used to configure workflows. Centralized and
distributed approaches to building a software source code version control system are
analyzed. For the web-oriented SCADA project, the choice and use of the version
control system are justified. We provide concrete examples of using CI/CD that will
allow ordinary developers, not DevOps specialists, to take the first steps to configure
workflows for their projects and provide basic steps for configuring task execution using
the example of the build and test phase of the source code of a real project that uses
several programming languages. Figs.: 4. Refs. 20 titles.

Keywords: CI; CD; VCS; git; workflow; actions; building; testing; Agile.

